-
Notifications
You must be signed in to change notification settings - Fork 0
/
lane_finding.py
480 lines (401 loc) · 19.9 KB
/
lane_finding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import glob
import pickle
from pathlib import Path
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
from moviepy.editor import VideoFileClip
from Line import Line
def camera_calibration(folder, nx=9, ny=6):
# Arrays to store object points and image points from all images
# objpoints = 3D points in real world space; imgpoints = 2D points in image plane;
objpoints, imgpoints = [], []
objp = np.zeros((nx * ny, 3), np.float32)
objp[:, :2] = np.mgrid[0:nx, 0:ny].T.reshape(-1, 2)
for filename in glob.glob(folder):
# read in image as RGB and convert to gray scale
image = mpimg.imread(filename)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
image_name = filename.split("\\")[-1]
# find chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None)
# if corners are found, add object points and image points
if ret:
imgpoints.append(corners)
objpoints.append(objp)
chessboard_image = cv2.drawChessboardCorners(image, (nx, ny), corners, ret)
mpimg.imsave("output_images/chessboard_" + image_name, chessboard_image)
undistorted_image = undistort_calibration(image, objpoints, imgpoints)
mpimg.imsave("output_images/undistorted_" + image_name, undistorted_image)
def undistort_calibration(img, object_points, image_points):
img_size = (img.shape[1], img.shape[0])
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, img_size, None, None)
calibration = {"mtx": mtx, "dist": dist}
pickle.dump(calibration, open("calibration.p", "wb"))
undist = cv2.undistort(img, mtx, dist, None, mtx)
return undist
def warper(img):
img_size = (img.shape[1], img.shape[0])
src = np.float32(
[[(img_size[0] / 2) - 55, img_size[1] / 2 + 100],
[((img_size[0] / 6) - 10), img_size[1]],
[(img_size[0] * 5 / 6) + 60, img_size[1]],
[(img_size[0] / 2 + 55), img_size[1] / 2 + 100]])
dst = np.float32(
[[(img_size[0] / 4), 0],
[(img_size[0] / 4), img_size[1]],
[(img_size[0] * 3 / 4), img_size[1]],
[(img_size[0] * 3 / 4), 0]])
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_NEAREST)
return warped, M, Minv
def unwarper(img, Minv):
img_size = (img.shape[1], img.shape[0])
unwarped = cv2.warpPerspective(img, Minv, img_size, flags=cv2.INTER_NEAREST)
return unwarped
def abs_sobel_thresh(img, orient='x', sobel_kernel=3, thresh=(0, 255), convert_gray=False):
# Apply the following steps to img
# 1) Convert to grayscale if convert_gray is True
if convert_gray:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the derivative in x or y given orient = 'x' or 'y'
if orient.lower() == 'x':
sobel = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
elif orient.lower() == 'y':
sobel = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
else:
raise ValueError('Error: Please insert \'x\' or \'y\' for orientation')
# 3) Take the absolute value of the derivative or gradient
abs_sobel = np.absolute(sobel)
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
grad_binary = np.zeros_like(scaled_sobel)
# 6) Return this mask as your binary_output image
grad_binary[(scaled_sobel > thresh[0]) & (scaled_sobel < thresh[1])] = 1
return grad_binary
def mag_thresh(img, sobel_kernel=3, thresh=(0, 255), convert_gray=False):
# 1) Convert to grayscale if convert_gray is True
if convert_gray:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# 3) Calculate the magnitude
gradmag = np.sqrt(sobelx ** 2 + sobely ** 2)
# 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
scale_factor = np.max(gradmag) / 255
gradmag = (gradmag / scale_factor).astype(np.uint8)
# 5) Create a binary mask where mag thresholds are met
mag_binary = np.zeros_like(gradmag)
# 6) Return this mask as your binary_output image
mag_binary[(gradmag >= thresh[0]) & (gradmag <= thresh[1])] = 1
return mag_binary
def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi / 2), convert_gray=False):
# 1) Convert to grayscale if convert_gray is True
if convert_gray:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# 3) Take the absolute value of the x and y gradients
abs_sobelx = np.absolute(sobelx)
abs_sobely = np.absolute(sobely)
# 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
gradient_dir = np.arctan2(abs_sobely, abs_sobelx)
# 5) Create a binary mask where direction thresholds are met
dir_binary = np.zeros_like(gradient_dir)
# 6) Return this mask as your binary_output image
dir_binary[(gradient_dir >= thresh[0]) & (gradient_dir <= thresh[1])] = 1
return dir_binary
def hls_threshold(img, channel='s', thresh=(0, 255)):
# 1) Convert to HLS color space
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
# 2) Select a channel
if channel.lower() == 'h':
color_channel = hls[:, :, 0]
elif channel.lower() == 'l':
color_channel = hls[:, :, 1]
elif channel.lower() == 's':
color_channel = hls[:, :, 2]
else:
raise ValueError('Error: Please insert \'h\', \'l\' or \'s\' for channel')
hls_binary = np.zeros_like(color_channel)
# 3) Apply a threshold to the S channel
hls_binary[(color_channel > thresh[0]) & (color_channel <= thresh[1])] = 1
# 4) Return a binary image of threshold result
return hls_binary
def combined_threshold(img, kernel_size=3):
# Apply each of the thresholding functions
# l_channel = hls_threshold(img, channel='s', thresh=(10, 100))
# plt.imshow(l_channel, cmap='gray')
# plt.show()
gradx = abs_sobel_thresh(img, orient='x', sobel_kernel=kernel_size, thresh=(20, 100), convert_gray=True)
grady = abs_sobel_thresh(img, orient='y', sobel_kernel=kernel_size, thresh=(20, 100), convert_gray=True)
s_channel = hls_threshold(img, thresh=(10, 230))
mag_binary = mag_thresh(s_channel, sobel_kernel=kernel_size, thresh=(30, 180))
dir_binary = dir_threshold(s_channel, sobel_kernel=9, thresh=(0.7, 1.4))
combined = np.zeros_like(dir_binary)
combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1
return combined
def hls_with_sobelx(img, kernel_size=3, s_thresh=(170, 250), sx_thresh=(20, 100)):
img = np.copy(img)
# Convert to HSV color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float)
l_channel = hls[:, :, 1]
s_channel = hls[:, :, 2]
# Sobel x
sxbinary = abs_sobel_thresh(l_channel, orient='x', sobel_kernel=kernel_size, thresh=sx_thresh)
# Threshold color channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
# Stack each channel
# Note color_binary[:, :, 0] is all 0s, effectively an all black image. It might
# be beneficial to replace this channel with something else.
# color_binary = np.dstack((np.zeros_like(sxbinary), sxbinary, s_binary))
combined = np.zeros_like(s_channel)
combined[(sxbinary == 1) | (s_binary == 1)] = 1
return combined
def region_of_interest(img):
"""
Applies an image mask.
Only keeps the region of the image defined by the polygon
formed from `vertices`. The rest of the image is set to black.
"""
# Create region mask
height = img.shape[0]
width = img.shape[1]
# Based on the angle of the camera we can assume that at least 50 - 60% from the upper half of the image
# is not necessary for lane detection
upper_half = height * .6
ratio = 4 / 7
vertices = np.array([
[(20, height),
((1 - ratio) * width, upper_half),
(ratio * width, upper_half),
(width - 20, height)]
], dtype=np.int32)
# defining a blank mask to start with
mask = np.zeros_like(img)
# defining a 3 channel or 1 channel color to fill the mask with depending on the input image
if len(img.shape) > 2:
channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
# filling pixels inside the polygon defined by "vertices" with the fill color
cv2.fillPoly(mask, vertices, ignore_mask_color)
# returning the image only where mask pixels are nonzero
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def lane_detection(binary_warped, nwindows=9):
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0] / 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Set height of windows
window_height = np.int(binary_warped.shape[0] / nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds, right_lane_inds = [], []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window + 1) * window_height
win_y_high = binary_warped.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2)
cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (
nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (
nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
left_lane.detected = True
else:
left_lane.detected = False
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
right_lane.detected = True
else:
right_lane.detected = False
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
return left_fit, right_fit
def lane_detection_from_previous(binary_warped):
left_fit, right_fit = left_lane.current_fit, right_lane.current_fit
# Assume you now have a new warped binary image
# from the next frame of video (also called "binary_warped")
# It's now much easier to find line pixels!
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) & (
nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] + margin)))
right_lane_inds = (
(nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - margin)) & (
nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
return left_fit, right_fit
def generate_values(binary_warped, left_fit, right_fit):
# Generate x and y values
ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
leftx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
rightx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
return ploty, leftx, rightx
def calculate_curvature(ploty, leftx, rightx):
y_eval = np.max(ploty)
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30 / 720 # meters per pixel in y dimension
xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty * ym_per_pix, leftx * xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty * ym_per_pix, rightx * xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * left_fit_cr[0])
right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * right_fit_cr[0])
offset = ((leftx[-1] + rightx[-1]) / 2 - 640) * xm_per_pix
return left_curverad, right_curverad, offset
def draw_lines(warped_img, leftx, rightx, ploty):
warp_zero = np.zeros_like(warped_img).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([leftx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([rightx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
return color_warp
def video_pipeline(img, ksize=5, nwindows=9, save=False):
# Check if calibration picke file exists and if not calibrate the camera
if not Path("calibration.p").is_file():
# Calibrate Camera
camera_calibration("camera_cal/calibration*.jpg")
calib_pickle = pickle.load(open('calibration.p', 'rb'))
mtx = calib_pickle['mtx']
dist = calib_pickle['dist']
# undistort the input image
undistorted_img = cv2.undistort(img, mtx, dist, None, mtx)
if save:
mpimg.imsave("output_images/pipeline_test_undistorted.jpg", undistorted_img)
# mask the undistorted image
masked_img = region_of_interest(undistorted_img)
if save:
mpimg.imsave("output_images/pipeline_test_masked.jpg", masked_img)
# convert image to a colored binary image (hls version)
color_binary_hls_img = hls_with_sobelx(masked_img, kernel_size=ksize)
if save:
mpimg.imsave("output_images/pipeline_test_color_binary_hls.jpg", color_binary_hls_img, cmap='gray')
# convert image to a colored binary image (combined dir, mag and sobel)
color_binary_combined_img = combined_threshold(masked_img, kernel_size=ksize)
if save:
mpimg.imsave("output_images/pipeline_test_color_binary_combined.jpg", color_binary_combined_img, cmap='gray')
# warp image to birds-eye view
warped_img, M, Minv = warper(color_binary_hls_img)
if save:
mpimg.imsave("output_images/pipeline_test_warped.jpg", warped_img, cmap='gray')
# detect the lane lines
if left_lane.detected or right_lane.detected:
left_fit, right_fit = lane_detection_from_previous(warped_img)
else:
left_fit, right_fit = lane_detection(warped_img, nwindows=nwindows)
left_lane.current_fit, right_lane.current_fit = left_fit, right_fit
# generate x and y values
ploty, leftx, rightx = generate_values(warped_img, left_fit, right_fit)
if save:
plt.axis('off')
plt.tick_params(axis='both', left='off', top='off', right='off', bottom='off', labelleft='off', labeltop='off',
labelright='off', labelbottom='off')
plt.imshow(warped_img, cmap='gray')
plt.plot(leftx, ploty, color='yellow')
plt.plot(rightx, ploty, color='yellow')
plt.savefig("output_images/pipeline_test_lane_detection.jpg", bbox_inches='tight', pad_inches=0)
plt.close()
left_lane.allx, right_lane.allx = leftx, rightx
left_lane.ally = right_lane.ally = ploty
# calculate the curvature
left_curvrad, right_curvrad, offset = calculate_curvature(ploty, leftx, rightx)
left_lane.radius_of_curvature, right_lane.radius_of_curvature = left_curvrad, right_curvrad
# Create an image to draw the lines on
color_warp = draw_lines(warped_img, leftx, rightx, ploty)
# Warp the blank back to original image space using inverse perspective matrix (Minv)
unwarped_img = unwarper(color_warp, Minv)
# Combine the result with the original image
result_img = cv2.addWeighted(undistorted_img, 1, unwarped_img, 0.3, 0)
if save:
mpimg.imsave("output_images/pipeline_test_result.jpg", result_img)
else:
text = "Left curvature: {:.2f}m\n".format(left_curvrad)
text += "Right curvature: {:.2f}m\n".format(right_curvrad)
if offset > 0:
text += "Distance from left: {:.2f}m".format(offset)
elif offset < 0:
text += "Distance from right: {:.2f}m".format(offset)
else:
text += "Vehicle is at the center between lane lines."
# Hack because OpenCV doesN#t support \n character in putText()
y0, dy = 50, 48
for i, line in enumerate(text.split('\n')):
y = y0 + i * dy
cv2.putText(result_img, line, (50, y), cv2.FONT_HERSHEY_COMPLEX, 1, [255, 255, 255])
return result_img
# Choose a Sobel kernel size and the number of sliding windows
ksize = 5
nwindows = 9
# load test image
test_image = mpimg.imread('test_images/test5.jpg')
left_lane = Line()
right_lane = Line()
result = video_pipeline(test_image, ksize=ksize, nwindows=nwindows, save=True)
video_output_file = 'project_video_output.mp4'
video_input_file = VideoFileClip("./project_video.mp4")
video_output = video_input_file.fl_image(video_pipeline)
video_output.write_videofile(video_output_file, audio=False)