-
Notifications
You must be signed in to change notification settings - Fork 2
/
mhealth_resnet_plot.py
264 lines (229 loc) · 9.2 KB
/
mhealth_resnet_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
import torch.nn.functional as F
import torch.nn as nn
import json
import torch_geometric.nn as pyg_nn
from sklearn.metrics import f1_score
from torch_scatter import scatter_max
from torch_geometric.nn import DenseGCNConv, ChebConv, BatchNorm, PairNorm, GraphNorm
import sklearn.metrics as metrics
from mmhealth_dataset import get_dataset
from torch_geometric.data import DataLoader
import warnings
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
warnings.filterwarnings("ignore")
def get_data():
train, test = get_dataset('data_/mealth.dat')
return DataLoader(dataset=train, shuffle=True, batch_size=64), DataLoader(dataset=test, shuffle=True,
batch_size=128,
)
class OwnGCN(nn.Module):
def __init__(self, in_c, hid_c, out_c, device):
super(OwnGCN, self).__init__()
self.device = device
self.conv1 = ChebConv(128, 256, 2)
self.bn1 = GraphNorm(256)
self.conv2 = ChebConv(256, 512, 3)
self.bn2 = GraphNorm(512)
self.conv3 = ChebConv(512, 256, 3)
self.bn3 = GraphNorm(256)
self.conv4 = ChebConv(256, 128, 2)
self.conv5 = ChebConv(128, 256, 2)
self.bn5 = GraphNorm(256)
self.conv6 = ChebConv(256, 512, 3)
self.bn6 = GraphNorm(512)
self.conv7 = ChebConv(512, 256, 3)
self.bn7 = GraphNorm(256)
self.conv8 = ChebConv(256, 128, 2)
self.conv9 = ChebConv(128, 256, 2)
self.bn9 = GraphNorm(256)
self.conv10 = ChebConv(256, 512, 3)
self.bn10 = GraphNorm(512)
self.conv11 = ChebConv(512, 256, 3)
self.bn11 = GraphNorm(256)
self.conv12 = ChebConv(256, 128, 2)
self.conv13 = ChebConv(128, 256, 2)
self.bn13 = GraphNorm(256)
self.conv14 = ChebConv(256, 512, 3)
self.bn14 = GraphNorm(512)
self.conv15 = ChebConv(512, 256, 3)
self.bn15 = GraphNorm(256)
self.conv16 = ChebConv(256, 128, 2)
self.linear1 = torch.nn.Linear(128, 64)
self.linear2 = torch.nn.Linear(64, 12)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x1 = self.conv1(x, edge_index)
x1 = self.bn1(x1)
x1 = F.leaky_relu(x1, negative_slope=0.2)
x2 = self.conv2(x1, edge_index)
x2 = self.bn2(x2)
x2 = F.leaky_relu(x2, negative_slope=0.2)
x3 = self.conv3(x2, edge_index)
x3 = self.bn3(x3)
x3 = F.leaky_relu(x3, negative_slope=0.2)
x4 = self.conv4(x3, edge_index)
x4 += x
x4 = F.relu(x4)
x5 = self.conv5(x4, edge_index)
x5 = self.bn5(x5)
x5 = F.leaky_relu(x5, negative_slope=0.2)
x6 = self.conv6(x5, edge_index)
x6 = self.bn6(x6)
x6 = F.leaky_relu(x6, negative_slope=0.2)
x7 = self.conv7(x6, edge_index)
x7 = self.bn7(x7)
x7 = F.leaky_relu(x7, negative_slope=0.2)
x8 = self.conv8(x7, edge_index)
x8 += x
x8 = F.relu(x8)
x9 = self.conv9(x8, edge_index)
x9 = self.bn9(x9)
x9 = F.leaky_relu(x9, negative_slope=0.2)
x10 = self.conv10(x9, edge_index)
x10 = self.bn10(x10)
x10 = F.leaky_relu(x10, negative_slope=0.2)
x11 = self.conv11(x10, edge_index)
x11 = self.bn11(x11)
x11 = F.leaky_relu(x11, negative_slope=0.2)
x12 = self.conv12(x11, edge_index)
x12 += x
x12 = F.relu(x12)
x13 = self.conv13(x12, edge_index)
x13 = self.bn13(x13)
x13 = F.leaky_relu(x13, negative_slope=0.2)
x14 = self.conv14(x13, edge_index)
x14 = self.bn14(x14)
x14 = F.leaky_relu(x14, negative_slope=0.2)
x15 = self.conv15(x14, edge_index)
x15 = self.bn15(x15)
x15 = F.leaky_relu(x15, negative_slope=0.2)
x16 = self.conv16(x15, edge_index)
x16 += x
x16 = F.relu(x16)
# x, _ = scatter_max(x, data.batch, dim=0)
# global_mean_pool 最大池化
out = pyg_nn.global_mean_pool(x16, data.batch) # 平均池化
out = self.linear1(out)
out = F.tanh(out)
out = self.linear2(out)
return out
def main():
# os.environ[]
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.cuda.set_device(1)
train_loader, test_loader = get_data()
# loader_test, dataset_test = get_data(mode='test')
net = OwnGCN(in_c=24, hid_c=200, out_c=5, device=device)
net.to(device)
#params = torch.load("net_pam.pth") # 加载参数
#net.load_state_dict(params, False)
# data = cora[0].to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
# train
criterion = nn.CrossEntropyLoss()
net.train()
dev_loss = []
dev_accuracies = []
train_loss = []
for epoch in range(100):
epoch_loss = 0.0
batch_num = 0
for batch in train_loader:
batch_num += 1
net.zero_grad()
batch = batch.to(device)
output = net(batch)
loss = criterion(output, batch.y)
epoch_loss += loss.item()
loss.backward()
optimizer.step()
print(f'epoch {epoch}, loss: {epoch_loss/batch_num}')
train_loss.append(epoch_loss/batch_num)
correct = 0
total = 0
batch_num = 0
loss = 0
f1score = 0
target = []
predict = []
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
for data in test_loader:
data = data.to(device)
outputs = net(data)
loss += criterion(outputs, data.y)
_, predicted = torch.max(outputs, 1)
total += data.y.size(0)
batch_num += 1
correct += (predicted == data.y).sum().cpu().item()
# top_p, top_class = outputs.topk(1, dim=1)
# equals = top_class == data.y.view(*top_class.shape).long()
# accuracy += torch.mean(ex/quals.type(torch.FloatTensor))
# f1score += metrics.f1_score(top_class.cpu(), data.y.view(*top_class.shape).long().cpu(),
# average='weighted')
predict.extend(predicted.detach().cpu().numpy())
target.extend(data.y.detach().cpu().numpy())
print('Test Accuracy: {:.2f} %'.format(100 * float(correct / total)), end=' ')
print(f'Test Loss: {loss.cpu().item() / batch_num:.3f}', end=' ')
print("F1-Score: {:.4f}...".format(metrics.f1_score(target, predict, average='weighted')))
print('Precision', metrics.precision_score(target, predict, average='weighted'))
print('Recall', metrics.recall_score(target, predict, average='weighted'))
dev_accuracies.append(float(correct / total))
dev_loss.append(loss.cpu().item() / batch_num)
# print('F1-score:', metrics.f1_score(y_true, y_pred))
plt.figure(figsize=(12, 8))
plt.plot(np.array(train_loss), "r--", label="Training Loss")
plt.plot(np.array(dev_loss), "r-", label="Test Loss")
plt.plot(np.array(dev_accuracies), "g-", label="Test Accuracy")
plt.title("Training session's progress over iterations")
plt.legend(loc='upper right', shadow=True)
plt.ylabel('Training progress(Loss or accuracy)')
plt.xlabel('Training EPOCH')
plt.ylim(0)
plt.savefig('Training iterations.png')
plt.show()
filename = "mhealth_renet_trainloss.txt"
with open(filename, 'w') as f_obj2:
json.dump(train_loss, f_obj2)
filename = "mhealth_renet_devloss.txt"
with open(filename, 'w') as f_obj:
json.dump(dev_loss, f_obj)
filename = "mhealth_resnet_devacc.txt"
with open(filename, 'w') as f_obj1:
json.dump(dev_accuracies, f_obj1)
# test
net.eval()
correct = 0
total = 0
batch_num = 0
loss = 0
y_valid = []
y_pred = []
target = []
predict = []
for data in test_loader:
data = data.to(device)
outputs = net(data)
loss += criterion(outputs, data.y)
_, predicted = torch.max(outputs, 1)
total += data.y.size(0)
batch_num += 1
correct += (predicted == data.y).sum().cpu().item()
predict.extend(predicted.detach().cpu().numpy())
target.extend(data.y.detach().cpu().numpy())
LABELS = ['1','2','3', '4', '5', '6', '7', '8', '9', '10', '11', '12']
confusion_matrix = metrics.confusion_matrix(target, predict) ###混淆矩阵TPTF
plt.figure(figsize=(16, 14))
sns.heatmap(confusion_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt="d");
plt.title("CONFUSION MATRIX_RFC : ")
plt.ylabel('True Label')
plt.xlabel('Predicted label')
#plt.savefig('cmatrix.png')
plt.show()
print('Test Accuracy: {:.2f} %'.format(100 * float(correct / total)), end=' ')
print(f'Test Loss: {loss.cpu().item() / batch_num:.3f}')
if __name__ == '__main__':
main()