-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathopclus.py
395 lines (351 loc) · 12 KB
/
opclus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# coding: utf-8
"""
Semi-superised LDA
"""
import numpy as np
import random
import math
from scipy.special import gamma,gammaln
from scipy import weave
import sys, os
stop = set(l.strip() for l in file("/home/top/downloads/multi-task-review/sorted_data/stopwords"))
import re
wre = re.compile(r"(\w)+")
def get_words(text):
"A simple tokenizer"
l = 0
while l < len(text):
s = wre.search(text,l)
try:
st = text[s.start():s.end()].lower()
if not st in stop:
yield st
l = s.end()
except:
break
def bigrams(it):
prev = None
for i in it:
if prev:
yield prev,i
prev = i
def categorical2(probs):
return np.argmax(np.random.multinomial(1,probs))
def parse_file(reviews, bp, dire, p, l, fname):
f = os.path.join(bp,dire,fname)
in_review = False
text = ""
for line in file(f):
if in_review:
if line.strip() == "</review_text>":
in_review = False
reviews.append((p, l, text))
text = ""
else:
text += " " + line
else:
if line.strip() == "<review_text>":
in_review = True
return reviews
def parse_reviews(bp):
reviews = []
for p,dire in enumerate(os.listdir(bp)):
if not "." in dire and not "stopwords" in dire:
parse_file(reviews, bp, dire, p, "n", "negative.review")
parse_file(reviews, bp, dire, p, "p", "positive.review")
parse_file(reviews, bp, dire, p, "u", "unlabeled.review")
return reviews
def gamma_pdf(x,k,theta):
x,k,theta = map(float,(x,k,theta))
return (x**(k-1))*(math.exp(-x/theta))/((theta**k)*gamma(k))
class OpinionSampler(object):
def __init__(self, reviews, nops):
print "init"
random.shuffle(reviews)
reviews = [r for r in reviews if r[1] != "u"]
self.product = [r[0] for r in reviews]
self.all_products = list(sorted(set(self.product)))
self.mprod = max(self.all_products)+1
self.label = [r[1] for r in reviews]
self.text = [r[2] for r in reviews]
print "init 2"
self.docs = []
self.reverse_map = {}
self.all_words = []
for t in self.text:
doc = []
for w in bigrams(get_words(t)):
if not w in self.reverse_map:
self.reverse_map[w] = len(self.all_words)
self.all_words.append(w)
doc.append(self.reverse_map[w])
self.docs.append(doc)
print "init 3"
self.Ndocuments = len(self.docs)
self.Nwords = len(self.all_words)
self.Nops = nops
self.alpha = 1.
self.beta = 100.
self.op_counts = np.zeros(nops)+self.beta
self.ops = np.array([np.zeros(len(self.all_words))+self.alpha
for i in xrange(nops)])
self.sops = np.array([np.sum(s) for s in self.ops])
self.prods = [np.zeros(len(self.all_words))+self.alpha for i in xrange(self.mprod)]
self.sprods = [np.sum(s) for s in self.prods]
self.generic = np.zeros(len(self.all_words))+self.alpha
self.sgen = np.sum(self.generic)
self.initialize()
def initialize(self):
print "init 4"
self.assign_ops = [random.randint(0, len(self.ops)-1) for i in self.docs]
#d= {"p": 1, "n":0, "u": 2}
#self.assign_ops = [d[i] for i in self.label]
self.assign_words = []
print "init 5"
ps = np.array([1., 3., 1.])
ps /= np.sum(ps)
for d in xrange(self.Ndocuments):
ass = []
self.op_counts[self.assign_ops[d]] += 1
rel = 0
for i,w in enumerate(self.docs[d]):
t = categorical2(ps)
ass.append(t)
if t == 1:
self.ops[self.assign_ops[d]][w] += 1
self.sops[self.assign_ops[d]] += 1
rel += 1
elif t == 0:
self.prods[self.product[d]][w] += 1
self.sprods[self.product[d]] += 1
else:
self.generic[w] += 1
self.sgen += 1
self.assign_words.append(ass)
print "init 6"
def w_cond_dist(self, d,w):
op = self.ops[self.assign_ops[d]]
sop = self.sops[self.assign_ops[d]]
prod = self.prods[self.product[d]]
sprod = self.sprods[self.product[d]]
generic = self.generic
sgen = self.sgen
ww = self.docs[d][w]
if self.assign_words[d][w] == 1:
op[ww] -= 1
sop -= 1
elif self.assign_words[d][w] == 0:
prod[ww] -= 1
sprod -= 1
else:
generic[ww] -= 1
sgen -= 1
ps = np.zeros(3)
ps[1] = (op[ww])/((sop))
ps[0] = (prod[ww])/((sprod))
ps[2] = 0 #(generic[ww])/((sgen))
ps /= np.sum(ps)
t = categorical2(ps)
self.assign_words[d][w] = t
if self.assign_words[d][w] == 1:
op[ww] += 1
sop += 1
elif self.assign_words[d][w] == 0:
prod[ww] += 1
sprod += 1
else:
generic[ww] += 1
sgen += 1
def rel_words(self, d):
rwd = []
t = 0
for i,w in enumerate(self.assign_words[d]):
if w == 1:
rwd.append(self.docs[d][i])
t += 1
return rwd, t
def c_cond_dist(self, d):
rwd, t = self.rel_words(d)
for w in rwd:
self.ops[self.assign_ops[d]][w] -= 1
self.sops[self.assign_ops[d]] -= t
self.op_counts[self.assign_ops[d]] -= 1
if t == 0:
nop = random.randint(0,len(self.ops)-1)
self.op_counts[nop] += 1
self.assign_ops[d] = nop
return
ps = np.zeros(len(self.ops))
for i in xrange(len(ps)):
for w in rwd:
ps[i] += np.log((self.ops[i][w])/self.sops[i])
ps = np.exp(ps)
ps /= np.sum(ps)
nop = categorical2(ps)
self.assign_ops[d] = nop
for w in rwd:
self.ops[nop][w] += 1
self.sops[nop] += t
self.op_counts[nop] += 1
def old_c_cond_dist(self, d):
rwd, t = self.rel_words(d)
self.ops[self.assign_ops[d]] -= rwd
self.sops[self.assign_ops[d]] -= t
self.op_counts[self.assign_ops[d]] -= 1
if t == 0:
nop = random.randint(0,len(self.ops)-1)
self.op_counts[nop] += 1
self.assign_ops[d] = nop
return
ps = np.sum(rwd*np.log((self.ops / self.sops.reshape((-1,1)))), axis=1)
ps = np.exp(ps)
ps /= np.sum(ps)
nop = categorical2(ps)
self.assign_ops[d] = nop
self.ops[nop] += rwd
self.sops[nop] += t
self.op_counts[nop] += 1
def add_alpha(self, alpha):
for i in xrange(len(self.ops)):
self.ops[i] += alpha
self.sops[i] = np.sum(self.ops[i])
for i in xrange(len(self.prods)):
self.prods[i] += alpha
self.sprods[i] = np.sum(self.prods[i])
self.generic += alpha
self.sgen += np.sum(self.generic)
def redef_lik(self, alpha):
self.add_alpha(alpha)
self.alpha = alpha
lik = self.likelihood()
self.add_alpha(-alpha)
return lik
def resample_alpha(self):
old_lik = self.likelihood()
old_alpha = self.alpha
liks = 1
x0 = old_alpha
self.add_alpha(-old_alpha)
old_lik = self.redef_lik(x0)
lnt = old_lik - np.random.exponential(1)
# doubling to find the slice
w = old_alpha/32.
L = max(0, old_alpha - w*random.random())
R = L + w
K = 4
while K > 0 and (lnt < self.redef_lik(L) or lnt < self.redef_lik(R)):
liks += 2
V = random.random()
if V < 0.5:
if L-(R-L) < 0:
print "L would be", L-(R-L), "R is", R
L = max(0, L-(R-L))
else:
R = R+(R-L)
K = K-1
#print "finished doubling after", liks, "liks"
# now sampling with shrinkage
rej = True
while rej:
U = random.random()
x1 = L+U*(R-L)
#print "x1", x1, "x0", x0
liks += 1
rr = self.redef_lik(x1)
#print old_lik, lnt, rr
if lnt < rr:
# let's assume the distribution is roughly unimodal
break
else:
if x1 < old_alpha:
L = x1
else:
R = x1
self.alpha = x1
self.add_alpha(x1)
self.lik = self.likelihood()
#print "accepted", x1, "after", liks+1, "liks"
def iterate(self, it):
for document in xrange(self.Ndocuments):
if document % 1000 == 0:
pass #print "document", document, self.Ndocuments
self.c_cond_dist(document)
for i in xrange(len(self.docs[document])):
self.w_cond_dist(document, i)
self.resample_alpha()
def likelihood(self):
lik = np.log(gamma_pdf(self.alpha, 10., 0.1))
for d in xrange(self.Ndocuments):
for i,w in enumerate(self.docs[d]):
if self.assign_words[d][i] == 1:
ps = self.ops[self.assign_ops[d]]
sps = self.sops[self.assign_ops[d]]
elif self.assign_words[d][i] == 0:
ps = self.prods[self.product[d]]
sps = self.sprods[self.product[d]]
else:
ps = self.generic
sps = self.sgen
lik += np.log((ps[w])/(sps))
if lik != lik:
print "nan, shit"
print str(ps), ps[w]/np.sum(ps), ps[w], self.alpha
return 0.
return lik
def run(self,nsamples):
"The sampler itself."
self.lik = self.likelihood()
self.print_op_proportions()
for i in xrange(nsamples):
self.iterate(i)
self.print_op_proportions()
self.print_prod_proportions()
#self.print_topic_proportions()
print self.lik
def print_op_proportions(self):
props = [{"n":0, "p":0, "u":0} for o in self.ops]
for d in xrange(len(self.docs)):
props[self.assign_ops[d]][self.label[d]] += 1
p2 = []
for i,p in enumerate(props):
#print
#print "op", i, self.op_counts[i]/np.sum(self.op_counts)
ps = self.ops[i]+self.alpha
norm = np.sum(ps)
top_k = np.argsort(-ps)[:30]
#for t in top_k:
# print self.all_words[t], ps[t]/float(norm)
#print
print "opc",
for i,p in enumerate(props):
c_p = p["p"]
c_n = p["n"]
c_u = p["u"]
c_t = float(c_p+c_n+c_u)
if c_t == 0: continue
if c_n+c_p == 0: continue
print "%5f" %(c_p/float(c_n+c_p)),
print self.lik, self.alpha
def print_prod_proportions(self):
p2 = []
cr = np.zeros(len(self.prods))
cp = np.zeros(len(self.prods))
cg = np.zeros(len(self.prods))
cc = [cp,cr,cg]
for i in xrange(len(self.docs)):
for j in xrange(len(self.docs[i])):
cc[self.assign_words[i][j]][self.product[i]] += 1
for i,p in enumerate(self.prods):
ct = cp[i] + cr[i] + cg[i]
#print "prod", i, cp[i]/ct, cr[i]/ct, cg[i]/ct
#self.print_prod(0, self.generic, "generic", 0, 0)
def print_prod(self, i, p, pr, cpi, cgi):
ps = p+self.alpha
norm = np.sum(ps)
top_k = np.argsort(-ps)[:20]
print
print pr,i, cpi, cgi
for t in top_k:
print self.all_words[t], ps[t]/float(norm)
if __name__=='__main__':
pass