-
Notifications
You must be signed in to change notification settings - Fork 368
/
Copy pathrun_inference.py
294 lines (226 loc) · 11.3 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import cv2
import einops
import numpy as np
import torch
import random
from pytorch_lightning import seed_everything
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
from cldm.hack import disable_verbosity, enable_sliced_attention
from datasets.data_utils import *
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import albumentations as A
from omegaconf import OmegaConf
from PIL import Image
save_memory = False
disable_verbosity()
if save_memory:
enable_sliced_attention()
config = OmegaConf.load('./configs/inference.yaml')
model_ckpt = config.pretrained_model
model_config = config.config_file
model = create_model(model_config ).cpu()
model.load_state_dict(load_state_dict(model_ckpt, location='cuda'))
model = model.cuda()
ddim_sampler = DDIMSampler(model)
def aug_data_mask(image, mask):
transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.5),
])
transformed = transform(image=image.astype(np.uint8), mask = mask)
transformed_image = transformed["image"]
transformed_mask = transformed["mask"]
return transformed_image, transformed_mask
def process_pairs(ref_image, ref_mask, tar_image, tar_mask):
# ========= Reference ===========
# ref expand
ref_box_yyxx = get_bbox_from_mask(ref_mask)
# ref filter mask
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
y1,y2,x1,x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
ref_mask = ref_mask[y1:y2,x1:x2]
ratio = np.random.randint(12, 13) / 10
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
# to square and resize
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
masked_ref_image = cv2.resize(masked_ref_image, (224,224) ).astype(np.uint8)
ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False)
ref_mask_3 = cv2.resize(ref_mask_3, (224,224) ).astype(np.uint8)
ref_mask = ref_mask_3[:,:,0]
# ref aug
masked_ref_image_aug = masked_ref_image #aug_data(masked_ref_image)
# collage aug
masked_ref_image_compose, ref_mask_compose = masked_ref_image, ref_mask #aug_data_mask(masked_ref_image, ref_mask)
masked_ref_image_aug = masked_ref_image_compose.copy()
ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1)
ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255)
# ========= Target ===========
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2])
# crop
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.5, 3]) #1.2 1.6
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1,y2,x1,x2 = tar_box_yyxx_crop
cropped_target_image = tar_image[y1:y2,x1:x2,:]
tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop)
y1,y2,x1,x2 = tar_box_yyxx
# collage
ref_image_collage = cv2.resize(ref_image_collage, (x2-x1, y2-y1))
ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8)
collage = cropped_target_image.copy()
collage[y1:y2,x1:x2,:] = ref_image_collage
collage_mask = cropped_target_image.copy() * 0.0
collage_mask[y1:y2,x1:x2,:] = 1.0
# the size before pad
H1, W1 = collage.shape[0], collage.shape[1]
cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8)
collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8)
collage_mask = pad_to_square(collage_mask, pad_value = -1, random = False).astype(np.uint8)
# the size after pad
H2, W2 = collage.shape[0], collage.shape[1]
cropped_target_image = cv2.resize(cropped_target_image, (512,512)).astype(np.float32)
collage = cv2.resize(collage, (512,512)).astype(np.float32)
collage_mask = (cv2.resize(collage_mask, (512,512)).astype(np.float32) > 0.5).astype(np.float32)
masked_ref_image_aug = masked_ref_image_aug / 255
cropped_target_image = cropped_target_image / 127.5 - 1.0
collage = collage / 127.5 - 1.0
collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1)
item = dict(ref=masked_ref_image_aug.copy(), jpg=cropped_target_image.copy(), hint=collage.copy(), extra_sizes=np.array([H1, W1, H2, W2]), tar_box_yyxx_crop=np.array( tar_box_yyxx_crop ) )
return item
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop):
H1, W1, H2, W2 = extra_sizes
y1,y2,x1,x2 = tar_box_yyxx_crop
pred = cv2.resize(pred, (W2, H2))
m = 5 # maigin_pixel
if W1 == H1:
tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
return tar_image
if W1 < W2:
pad1 = int((W2 - W1) / 2)
pad2 = W2 - W1 - pad1
pred = pred[:,pad1: -pad2, :]
else:
pad1 = int((H2 - H1) / 2)
pad2 = H2 - H1 - pad1
pred = pred[pad1: -pad2, :, :]
gen_image = tar_image.copy()
gen_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
return gen_image
def inference_single_image(ref_image, ref_mask, tar_image, tar_mask, guidance_scale = 5.0):
item = process_pairs(ref_image, ref_mask, tar_image, tar_mask)
ref = item['ref'] * 255
tar = item['jpg'] * 127.5 + 127.5
hint = item['hint'] * 127.5 + 127.5
hint_image = hint[:,:,:-1]
hint_mask = item['hint'][:,:,-1] * 255
hint_mask = np.stack([hint_mask,hint_mask,hint_mask],-1)
ref = cv2.resize(ref.astype(np.uint8), (512,512))
seed = random.randint(0, 65535)
if save_memory:
model.low_vram_shift(is_diffusing=False)
ref = item['ref']
tar = item['jpg']
hint = item['hint']
num_samples = 1
control = torch.from_numpy(hint.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
clip_input = torch.from_numpy(ref.copy()).float().cuda()
clip_input = torch.stack([clip_input for _ in range(num_samples)], dim=0)
clip_input = einops.rearrange(clip_input, 'b h w c -> b c h w').clone()
guess_mode = False
H,W = 512,512
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning( clip_input )]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([torch.zeros((1,3,224,224))] * num_samples)]}
shape = (4, H // 8, W // 8)
if save_memory:
model.low_vram_shift(is_diffusing=True)
# ====
num_samples = 1 #gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = 512 #gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = 1 #gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = False #gr.Checkbox(label='Guess Mode', value=False)
#detect_resolution = 512 #gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024, value=512, step=1)
ddim_steps = 50 #gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = guidance_scale #gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = -1 #gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = 0.0 #gr.Number(label="eta (DDIM)", value=0.0)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy()#.clip(0, 255).astype(np.uint8)
result = x_samples[0][:,:,::-1]
result = np.clip(result,0,255)
pred = x_samples[0]
pred = np.clip(pred,0,255)[1:,:,:]
sizes = item['extra_sizes']
tar_box_yyxx_crop = item['tar_box_yyxx_crop']
gen_image = crop_back(pred, tar_image, sizes, tar_box_yyxx_crop)
return gen_image
if __name__ == '__main__':
'''
# ==== Example for inferring a single image ===
reference_image_path = './examples/TestDreamBooth/FG/01.png'
bg_image_path = './examples/TestDreamBooth/BG/000000309203_GT.png'
bg_mask_path = './examples/TestDreamBooth/BG/000000309203_mask.png'
save_path = './examples/TestDreamBooth/GEN/gen_res.png'
# reference image + reference mask
# You could use the demo of SAM to extract RGB-A image with masks
# https://segment-anything.com/demo
image = cv2.imread( reference_image_path, cv2.IMREAD_UNCHANGED)
mask = (image[:,:,-1] > 128).astype(np.uint8)
image = image[:,:,:-1]
image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB)
ref_image = image
ref_mask = mask
# background image
back_image = cv2.imread(bg_image_path).astype(np.uint8)
back_image = cv2.cvtColor(back_image, cv2.COLOR_BGR2RGB)
# background mask
tar_mask = cv2.imread(bg_mask_path)[:,:,0] > 128
tar_mask = tar_mask.astype(np.uint8)
gen_image = inference_single_image(ref_image, ref_mask, back_image.copy(), tar_mask)
h,w = back_image.shape[0], back_image.shape[0]
ref_image = cv2.resize(ref_image, (w,h))
vis_image = cv2.hconcat([ref_image, back_image, gen_image])
cv2.imwrite(save_path, vis_image [:,:,::-1])
'''
#'''
# ==== Example for inferring VITON-HD Test dataset ===
from omegaconf import OmegaConf
import os
DConf = OmegaConf.load('./configs/datasets.yaml')
save_dir = './VITONGEN'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
test_dir = DConf.Test.VitonHDTest.image_dir
image_names = os.listdir(test_dir)
for image_name in image_names:
ref_image_path = os.path.join(test_dir, image_name)
tar_image_path = ref_image_path.replace('/cloth/', '/image/')
ref_mask_path = ref_image_path.replace('/cloth/','/cloth-mask/')
tar_mask_path = ref_image_path.replace('/cloth/', '/image-parse-v3/').replace('.jpg','.png')
ref_image = cv2.imread(ref_image_path)
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
gt_image = cv2.imread(tar_image_path)
gt_image = cv2.cvtColor(gt_image, cv2.COLOR_BGR2RGB)
ref_mask = (cv2.imread(ref_mask_path) > 128).astype(np.uint8)[:,:,0]
tar_mask = Image.open(tar_mask_path ).convert('P')
tar_mask= np.array(tar_mask)
tar_mask = tar_mask == 5
gen_image = inference_single_image(ref_image, ref_mask, gt_image.copy(), tar_mask)
gen_path = os.path.join(save_dir, image_name)
vis_image = cv2.hconcat([ref_image, gt_image, gen_image])
cv2.imwrite(gen_path, vis_image[:,:,::-1])
#'''