-
Notifications
You must be signed in to change notification settings - Fork 270
/
Copy pathpredict.py
226 lines (200 loc) · 8.21 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import yaml
import pynvml
from PIL import Image
import torch.distributed as dist
import torch
import torch.cuda.amp as amp
from torch.nn.parallel import DistributedDataParallel
from einops import rearrange
from cog import BasePredictor, Input, Path
from tools.modules.config import cfg
from utils.multi_port import find_free_port
from utils.seed import setup_seed
from utils.video_op import save_i2vgen_video, save_i2vgen_video_safe
from utils.assign_cfg import assign_signle_cfg
from utils.registry_class import MODEL, EMBEDDER, AUTO_ENCODER, DIFFUSION
import utils.transforms as data
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
with open("configs/i2vgen_xl_infer.yaml", "r") as file:
config = yaml.safe_load(file)
self.cfg = assign_signle_cfg(cfg, config, "vldm_cfg")
for k, v in config.items():
if isinstance(v, dict) and k in self.cfg:
self.cfg[k].update(v)
else:
self.cfg[k] = v
if not "MASTER_ADDR" in os.environ:
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = find_free_port()
self.cfg.gpu = 0
self.cfg.pmi_rank = int(os.getenv("RANK", 0))
self.cfg.pmi_world_size = int(os.getenv("WORLD_SIZE", 1))
self.cfg.gpus_per_machine = torch.cuda.device_count()
self.cfg.world_size = self.cfg.pmi_world_size * self.cfg.gpus_per_machine
torch.cuda.set_device(self.cfg.gpu)
torch.backends.cudnn.benchmark = True
self.cfg.rank = self.cfg.pmi_rank * self.cfg.gpus_per_machine + self.cfg.gpu
dist.init_process_group(
backend="nccl", world_size=self.cfg.world_size, rank=self.cfg.rank
)
# [Diffusion]
self.diffusion = DIFFUSION.build(self.cfg.Diffusion)
# [Model] embedder
self.clip_encoder = EMBEDDER.build(self.cfg.embedder)
self.clip_encoder.model.to(self.cfg.gpu)
_, _, zero_y_negative = self.clip_encoder(text=self.cfg.negative_prompt)
self.zero_y_negative = zero_y_negative.detach()
self.black_image_feature = torch.zeros([1, 1, self.cfg.UNet.y_dim]).cuda()
# [Model] auotoencoder
self.autoencoder = AUTO_ENCODER.build(self.cfg.auto_encoder)
self.autoencoder.eval() # freeze
for param in self.autoencoder.parameters():
param.requires_grad = False
self.autoencoder.cuda()
# [Model] UNet
self.model = MODEL.build(self.cfg.UNet)
checkpoint_dict = torch.load(self.cfg.test_model, map_location="cpu")
state_dict = checkpoint_dict["state_dict"]
status = self.model.load_state_dict(state_dict, strict=True)
print("Load model from {} with status {}".format(self.cfg.test_model, status))
self.model = self.model.to(self.cfg.gpu)
self.model.eval()
self.model = DistributedDataParallel(self.model, device_ids=[self.cfg.gpu])
torch.cuda.empty_cache()
print("Models loaded!")
def predict(
self,
image: Path = Input(description="Input image."),
prompt: str = Input(description="Describe the input image."),
max_frames: int = Input(
description="Number of frames in the output", default=16, ge=2
),
num_inference_steps: int = Input(
description="Number of denoising steps", ge=1, le=500, default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=9
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> Path:
"""Run a single prediction on the model"""
image = Image.open(str(image)).convert("RGB")
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
setup_seed(seed)
# [Data] Data Transform
train_trans = data.Compose(
[
data.CenterCropWide(size=self.cfg.resolution),
data.ToTensor(),
data.Normalize(mean=self.cfg.mean, std=self.cfg.std),
]
)
vit_trans = data.Compose(
[
data.CenterCropWide(
size=(self.cfg.resolution[0], self.cfg.resolution[0])
),
data.Resize(self.cfg.vit_resolution),
data.ToTensor(),
data.Normalize(mean=self.cfg.vit_mean, std=self.cfg.vit_std),
]
)
captions = [prompt]
with torch.no_grad():
image_tensor = vit_trans(image)
image_tensor = image_tensor.unsqueeze(0)
y_visual, y_text, y_words = self.clip_encoder(
image=image_tensor, text=captions
)
y_visual = y_visual.unsqueeze(1)
fps_tensor = torch.tensor(
[self.cfg.target_fps], dtype=torch.long, device=self.cfg.gpu
)
image_id_tensor = train_trans([image]).to(self.cfg.gpu)
local_image = self.autoencoder.encode_firsr_stage(
image_id_tensor, self.cfg.scale_factor
).detach()
local_image = local_image.unsqueeze(2).repeat_interleave(
repeats=max_frames, dim=2
)
with torch.no_grad():
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
print(f"GPU Memory used {meminfo.used / (1024 ** 3):.2f} GB")
# Sample images
with amp.autocast(enabled=self.cfg.use_fp16):
noise = torch.randn(
[
1,
4,
max_frames,
int(self.cfg.resolution[1] / self.cfg.scale),
int(self.cfg.resolution[0] / self.cfg.scale),
]
)
noise = noise.to(self.cfg.gpu)
infer_img = (
self.black_image_feature if self.cfg.use_zero_infer else None
)
model_kwargs = [
{
"y": y_words,
"image": y_visual,
"local_image": local_image,
"fps": fps_tensor,
},
{
"y": self.zero_y_negative,
"image": infer_img,
"local_image": local_image,
"fps": fps_tensor,
},
]
video_data = self.diffusion.ddim_sample_loop(
noise=noise,
model=self.model.eval(),
model_kwargs=model_kwargs,
guide_scale=guidance_scale,
ddim_timesteps=num_inference_steps,
eta=0.0,
)
video_data = 1.0 / self.cfg.scale_factor * video_data # [1, 4, 32, 46]
video_data = rearrange(video_data, "b c f h w -> (b f) c h w")
chunk_size = min(self.cfg.decoder_bs, video_data.shape[0])
video_data_list = torch.chunk(
video_data, video_data.shape[0] // chunk_size, dim=0
)
decode_data = []
for vd_data in video_data_list:
gen_frames = self.autoencoder.decode(vd_data)
decode_data.append(gen_frames)
video_data = torch.cat(decode_data, dim=0)
video_data = rearrange(
video_data, "(b f) c h w -> b c f h w", b=self.cfg.batch_size
)
text_size = cfg.resolution[-1]
out_path = "/tmp/out.mp4"
try:
save_i2vgen_video_safe(
out_path,
video_data.cpu(),
captions,
self.cfg.mean,
self.cfg.std,
text_size,
)
except Exception as e:
print(f"Step: save text or video error with {e}")
torch.cuda.synchronize()
dist.barrier()
return Path(out_path)