-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
44 lines (39 loc) · 1.02 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from transformers import GPT2LMHeadModel, GPT2Config, GPT2Tokenizer, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
# Initialize model, tokenizer, and configuration
config = GPT2Config(
vocab_size=50257,
n_positions=1024,
n_ctx=1024,
n_embd=768,
n_layer=12,
n_head=12
)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel(config=config)
# Prepare data
dataset = TextDataset(
tokenizer=tokenizer,
file_path="./data/persian_text.txt",
block_size=128
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Initialize Trainer
training_args = TrainingArguments(
output_dir="./model",
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=32,
save_steps=10_000,
save_total_limit=2,
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset
)
# Train
trainer.train()