Let us prepare a pet
table as an example (which is picked from MySQL)
name | owner | species | sex | birth | death |
---|---|---|---|---|---|
Fluffy | Harold | cat | f | 1993-02-04 | |
Claws | Gwen | cat | m | 1994-03-17 | |
Buffy | Harold | dog | f | 1989-05-13 | |
Fang | Benny | dog | m | 1990-08-27 | |
Bowser | Diane | dog | m | 1979-08-31 | 1995-07-29 |
Chirpy | Gwen | bird | f | 1998-09-11 | |
Whistler | Gwen | bird | 1997-12-09 | ||
Slim | Benny | snake | m | 1996-04-29 | |
Puffball | Diane | hamster | f | 1999-03-30 |
where name
is the only primary key.
As TableStore is schema-free, we do not need to (and should not) write blank cells to the pet
table.
Here is the JAVA program:
private static RangeRowQueryCriteria fetchCriteria() {
RangeRowQueryCriteria res = new RangeRowQueryCriteria("pet");
res.setMaxVersions(1);
List<PrimaryKeyColumn> lower = new ArrayList<PrimaryKeyColumn>();
List<PrimaryKeyColumn> upper = new ArrayList<PrimaryKeyColumn>();
lower.add(new PrimaryKeyColumn("name", PrimaryKeyValue.INF_MIN));
upper.add(new PrimaryKeyColumn("name", PrimaryKeyValue.INF_MAX));
res.setInclusiveStartPrimaryKey(new PrimaryKey(lower));
res.setExclusiveEndPrimaryKey(new PrimaryKey(upper));
return res;
}
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("RowCounter");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
Configuration hadoopConf = new Configuration();
JavaSparkContext sc = null;
try {
sc = new JavaSparkContext(sparkConf);
Configuration hadoopConf = new Configuration();
TableStore.setCredential(
hadoopConf,
new Credential(accessKeyId, accessKeySecret, securityToken));
Endpoint ep = new Endpoint(endpoint, instance);
TableStore.setEndpoint(hadoopConf, ep);
TableStoreInputFormat.addCriteria(hadoopConf, fetchCriteria());
F
JavaPairRDD<PrimaryKeyWritable, RowWritable> rdd = sc.newAPIHadoopRDD(
hadoopConf, TableStoreInputFormat.class,
PrimaryKeyWritable.class, RowWritable.class);
System.out.println(
new Formatter().format("TOTAL: %d", rdd.count()).toString());
} finally {
if (sc != null) {
sc.close();
}
}
}
If you prefer to scala, please replace JavaSparkContext
to SparkContext
and JavaPairRDD
to PairRDD
.
Let it run.
$ bin/spark-submit --master local --jars emr-tablestore-2.2.0.jar,tablestore-4.1.0-jar-with-dependencies.jar YourRowCounter.jar
TOTAL: 9
FYI,
- for more details about
TableStoreInputFormat
, please refer to (HadoopMR-on-TableStore.md). - in emr-examples_2.11-2.2.0.jar, we provides an executable row-counting program,
com.aliyun.openservices.tablestore.spark.RowCounter
.