-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathparallel_evaluation.py
157 lines (142 loc) · 5.65 KB
/
parallel_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
from typing import Any, List, Optional
from codenav.agents.gpt4.agent import OpenAICodeNavAgent
from codenav.constants import ABS_PATH_OF_CODENAV_DIR, DEFAULT_OPENAI_MODEL
from codenav.environments.code_env import PythonCodeEnv
from codenav.environments.done_env import DoneEnv
from codenav.environments.retrieval_env import EsCodeRetriever, RetrievalEnv
from codenav.interaction.episode import Episode
from codenav.retrieval.elasticsearch.elasticsearch_constants import RESERVED_CHARACTERS
from codenav.retrieval.elasticsearch.index_codebase import DEFAULT_ES_HOST
from codenav.utils.eval_types import EvalInput, EvalSpec, Str2AnyDict
from codenav.utils.evaluator import CodenavEvaluator
from codenav.utils.prompt_utils import PromptBuilder
# EvalSpec defines the components for running an evaluation
# EvalSpec is then used by the CodenavEvaluator to run CodeNav on inputs using 1 or more processes
# EvalSpec requires defining 3 methods: build_episode, run_interaction, log_output
class CodenavEvalSpec(EvalSpec):
def __init__(
self,
episode_kwargs: Str2AnyDict,
interaction_kwargs: Str2AnyDict,
logging_kwargs: Str2AnyDict,
):
super().__init__(episode_kwargs, interaction_kwargs, logging_kwargs)
@staticmethod
def build_episode(
eval_input: EvalInput,
episode_kwargs: Optional[Str2AnyDict] = None,
) -> Episode:
assert episode_kwargs is not None
prompt_builder = PromptBuilder(
repo_description=episode_kwargs["repo_description"]
)
prompt = prompt_builder.build(
dict(
AVAILABLE_ACTIONS=episode_kwargs["allowed_actions"],
RESERVED_CHARACTERS=RESERVED_CHARACTERS,
RETRIEVALS_PER_KEYWORD=episode_kwargs["retrievals_per_keyword"],
)
)
return Episode(
agent=OpenAICodeNavAgent(
prompt=prompt,
model=episode_kwargs["llm"],
allowed_action_types=episode_kwargs["allowed_actions"],
),
action_type_to_env=dict(
code=PythonCodeEnv(
code_dir=episode_kwargs["code_dir"],
sys_paths=episode_kwargs["sys_paths"],
working_dir=episode_kwargs["working_dir"],
),
search=RetrievalEnv(
code_retriever=EsCodeRetriever(
index_name=episode_kwargs["index_name"],
host=episode_kwargs["host"],
),
expansions_per_query=episode_kwargs["retrievals_per_keyword"],
prototypes_per_query=episode_kwargs["prototypes_per_keyword"],
),
done=DoneEnv(),
),
user_query_str=eval_input.query,
)
@staticmethod
def run_interaction(
episode: Episode,
interaction_kwargs: Optional[Str2AnyDict] = None,
) -> Str2AnyDict:
assert interaction_kwargs is not None
episode.step_until_max_steps_or_success(
max_steps=interaction_kwargs["max_steps"],
verbose=interaction_kwargs["verbose"],
)
ipynb_str = episode.to_notebook(cur_dir=episode.code_env.working_dir)
return dict(ipynb_str=ipynb_str)
@staticmethod
def log_output(
interaction_output: Str2AnyDict,
eval_input: EvalInput,
logging_kwargs: Optional[Str2AnyDict] = None,
) -> Any:
assert logging_kwargs is not None
outfile = os.path.join(logging_kwargs["out_dir"], f"{eval_input.uid}.ipynb")
with open(outfile, "w") as f:
f.write(interaction_output["ipynb_str"])
return outfile
def run_parallel_evaluation(
eval_inputs: List[EvalInput],
episode_kwargs: Str2AnyDict,
interaction_kwargs: Str2AnyDict,
logging_kwargs: Str2AnyDict,
num_processes: int = 2,
):
# create an instance of the CodenavEvaluator using the eval spec
evaluator = CodenavEvaluator(
eval_spec=CodenavEvalSpec(
episode_kwargs=episode_kwargs,
interaction_kwargs=interaction_kwargs,
logging_kwargs=logging_kwargs,
)
)
# Get outputs from the output queue
num_inputs = len(eval_inputs)
for i, output in enumerate(evaluator.evaluate(eval_inputs, n_procs=2)):
print(
f"Evaluated {i+1}/{num_inputs} | Input uid: {eval_inputs[i].uid} | Output saved to ",
output,
)
if __name__ == "__main__":
episode_kwargs = dict(
allowed_actions=["done", "code", "search"],
repo_description="codenav/repo_description.txt",
retrievals_per_keyword=3,
prototypes_per_keyword=7,
llm=DEFAULT_OPENAI_MODEL,
code_dir=ABS_PATH_OF_CODENAV_DIR,
sys_paths=[os.path.dirname(ABS_PATH_OF_CODENAV_DIR)],
working_dir=os.path.join(
os.path.dirname(ABS_PATH_OF_CODENAV_DIR), "playground"
),
index_name="codenav",
host=DEFAULT_ES_HOST,
)
interaction_kwargs = dict(max_steps=10, verbose=True)
logging_kwargs = dict(out_dir="/Users/tanmayg/Code/codenav_test/outputs")
# Define the inputs to evaluate using EvalInput
# Each EvalInput instance consists of a unique id (uid), a query, and optionally any metadata
eval_inputs = [
EvalInput(uid=1, query="Find the DoneEnv and instantiate it"),
EvalInput(
uid=2,
query="Build the prompt template using PromptBuilder and print all the placeholders",
),
]
run_parallel_evaluation(
eval_inputs,
episode_kwargs,
interaction_kwargs,
logging_kwargs,
num_processes=2,
)