-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
411 lines (399 loc) · 15.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#######################################
### reference: https://github.com/YatingMusic/remi/utils.py, model.py
#######################################
#import chord_recognition
import numpy as np
import miditoolkit
import copy
import pickle
# parameters for input
DEFAULT_VELOCITY_BINS = np.linspace(0, 128, 32+1, dtype=np.int)
DEFAULT_FRACTION = 16
DEFAULT_DURATION_BINS = np.arange(60, 3841, 60, dtype=int)
DEFAULT_TEMPO_INTERVALS = [range(30, 90), range(90, 150), range(150, 210)]
# parameters for output
DEFAULT_RESOLUTION = 480
class datapreprocessing(object):
def __init__(self, x_len, group_size,pickle_path, checkpoint_path):
self.x_len = x_len
self.pickle_path = pickle_path
self.group_size = group_size
self.checkpoint_path = checkpoint_path
self.event2word, self.word2event = pickle.load(open(self.pickle_path, 'rb'))
def return_token(self):
return len(self.event2word)
def extract_events(self, input_path):
note_items, tempo_items = read_items(input_path)
note_items = quantize_items(note_items)
max_time = note_items[-1].end
if 'chord' in self.checkpoint_path:
chord_items = extract_chords(note_items)
items = chord_items + tempo_items + note_items
else:
items = tempo_items + note_items
groups = group_items(items, max_time)
events = item2event(groups)
return events
def prepare_data(self, midi_paths):
# extract events
all_events = []
for path in midi_paths:
events = self.extract_events(path)
all_events.append(events)
# event to word
all_words = []
for events in all_events:
words = []
for event in events:
e = '{}_{}'.format(event.name, event.value)
if e in self.event2word:
words.append(self.event2word[e])
else:
# OOV
if event.name == 'Note Velocity':
# replace with max velocity based on our training data
words.append(self.event2word['Note Velocity_21'])
else:
# something is wrong
# you should handle it for your own purpose
print('something is wrong! {}'.format(e))
all_words.append(words)
# to training data
segments = []
for words in all_words:
pairs = []
for i in range(0, len(words)-self.x_len-1, self.x_len):
x = words[i:i+self.x_len]
y = words[i+1:i+self.x_len+1]
pairs.append([x, y])
pairs = np.array(pairs)
# abandon the last
for i in np.arange(0, len(pairs)-self.group_size, self.group_size*2):
data = pairs[i:i+self.group_size]
if len(data) == self.group_size:
segments.append(data)
segments = np.array(segments)
return segments
# read notes and tempo changes from midi (assume there is only one track)
def read_items(file_path):
midi_obj = miditoolkit.midi.parser.MidiFile(file_path)
# note
note_items = []
notes = midi_obj.instruments[0].notes
notes.sort(key=lambda x: (x.start, x.pitch))
for note in notes:
note_items.append(Item(
name='Note',
start=note.start,
end=note.end,
velocity=note.velocity,
pitch=note.pitch))
note_items.sort(key=lambda x: x.start)
# tempo
tempo_items = []
for tempo in midi_obj.tempo_changes:
tempo_items.append(Item(
name='Tempo',
start=tempo.time,
end=None,
velocity=None,
pitch=int(tempo.tempo)))
tempo_items.sort(key=lambda x: x.start)
# expand to all beat
max_tick = tempo_items[-1].start
existing_ticks = {item.start: item.pitch for item in tempo_items}
wanted_ticks = np.arange(0, max_tick+1, DEFAULT_RESOLUTION)
output = []
for tick in wanted_ticks:
if tick in existing_ticks:
output.append(Item(
name='Tempo',
start=tick,
end=None,
velocity=None,
pitch=existing_ticks[tick]))
else:
output.append(Item(
name='Tempo',
start=tick,
end=None,
velocity=None,
pitch=output[-1].pitch))
tempo_items = output
return note_items, tempo_items
# quantize items
def quantize_items(items, ticks=120):
# grid
grids = np.arange(0, items[-1].start, ticks, dtype=int)
# process
for item in items:
index = np.argmin(abs(grids - item.start))
shift = grids[index] - item.start
item.start += shift
item.end += shift
return items
# extract chord
def extract_chords(items):
method = chord_recognition.MIDIChord()
chords = method.extract(notes=items)
output = []
for chord in chords:
output.append(Item(
name='Chord',
start=chord[0],
end=chord[1],
velocity=None,
pitch=chord[2].split('/')[0]))
return output
# group items
def group_items(items, max_time, ticks_per_bar=DEFAULT_RESOLUTION*4):
items.sort(key=lambda x: x.start)
downbeats = np.arange(0, max_time+ticks_per_bar, ticks_per_bar)
groups = []
for db1, db2 in zip(downbeats[:-1], downbeats[1:]):
insiders = []
for item in items:
if (item.start >= db1) and (item.start < db2):
insiders.append(item)
overall = [db1] + insiders + [db2]
groups.append(overall)
return groups
# item to event
def item2event(groups):
events = []
n_downbeat = 0
for i in range(len(groups)):
if 'Note' not in [item.name for item in groups[i][1:-1]]:
continue
bar_st, bar_et = groups[i][0], groups[i][-1]
n_downbeat += 1
events.append(Event(
name='Bar',
time=None,
value=None,
text='{}'.format(n_downbeat)))
for item in groups[i][1:-1]:
# position
flags = np.linspace(bar_st, bar_et, DEFAULT_FRACTION, endpoint=False)
index = np.argmin(abs(flags-item.start))
events.append(Event(
name='Position',
time=item.start,
value='{}/{}'.format(index+1, DEFAULT_FRACTION),
text='{}'.format(item.start)))
if item.name == 'Note':
# velocity
velocity_index = np.searchsorted(
DEFAULT_VELOCITY_BINS,
item.velocity,
side='right') - 1
events.append(Event(
name='Note Velocity',
time=item.start,
value=velocity_index,
text='{}/{}'.format(item.velocity, DEFAULT_VELOCITY_BINS[velocity_index])))
# pitch
events.append(Event(
name='Note On',
time=item.start,
value=item.pitch,
text='{}'.format(item.pitch)))
# duration
duration = item.end - item.start
index = np.argmin(abs(DEFAULT_DURATION_BINS-duration))
events.append(Event(
name='Note Duration',
time=item.start,
value=index,
text='{}/{}'.format(duration, DEFAULT_DURATION_BINS[index])))
elif item.name == 'Chord':
events.append(Event(
name='Chord',
time=item.start,
value=item.pitch,
text='{}'.format(item.pitch)))
elif item.name == 'Tempo':
tempo = item.pitch
if tempo in DEFAULT_TEMPO_INTERVALS[0]:
tempo_style = Event('Tempo Class', item.start, 'slow', None)
tempo_value = Event('Tempo Value', item.start,
tempo-DEFAULT_TEMPO_INTERVALS[0].start, None)
elif tempo in DEFAULT_TEMPO_INTERVALS[1]:
tempo_style = Event('Tempo Class', item.start, 'mid', None)
tempo_value = Event('Tempo Value', item.start,
tempo-DEFAULT_TEMPO_INTERVALS[1].start, None)
elif tempo in DEFAULT_TEMPO_INTERVALS[2]:
tempo_style = Event('Tempo Class', item.start, 'fast', None)
tempo_value = Event('Tempo Value', item.start,
tempo-DEFAULT_TEMPO_INTERVALS[2].start, None)
elif tempo < DEFAULT_TEMPO_INTERVALS[0].start:
tempo_style = Event('Tempo Class', item.start, 'slow', None)
tempo_value = Event('Tempo Value', item.start, 0, None)
elif tempo > DEFAULT_TEMPO_INTERVALS[2].stop:
tempo_style = Event('Tempo Class', item.start, 'fast', None)
tempo_value = Event('Tempo Value', item.start, 59, None)
events.append(tempo_style)
events.append(tempo_value)
return events
# define "Item" for general storage
class Item(object):
def __init__(self, name, start, end, velocity, pitch):
self.name = name
self.start = start
self.end = end
self.velocity = velocity
self.pitch = pitch
def __repr__(self):
return 'Item(name={}, start={}, end={}, velocity={}, pitch={})'.format(
self.name, self.start, self.end, self.velocity, self.pitch)
class Event(object):
def __init__(self, name, time, value, text):
self.name = name
self.time = time
self.value = value
self.text = text
def __repr__(self):
return 'Event(name={}, time={}, value={}, text={})'.format(
self.name, self.time, self.value, self.text)
#############################################################################################
# WRITE MIDI
#############################################################################################
def word_to_event(words, word2event):
events = []
for word in words:
event_name, event_value = word2event.get(word).split('_')
events.append(Event(event_name, None, event_value, None))
return events
def write_midi(words, word2event, output_path, prompt_path=None):
events = word_to_event(words, word2event)
# get downbeat and note (no time)
temp_notes = []
temp_chords = []
temp_tempos = []
for i in range(len(events)-3):
if events[i].name == 'Bar' and i > 0:
temp_notes.append('Bar')
temp_chords.append('Bar')
temp_tempos.append('Bar')
elif events[i].name == 'Position' and \
events[i+1].name == 'Note Velocity' and \
events[i+2].name == 'Note On' and \
events[i+3].name == 'Note Duration':
# start time and end time from position
position = int(events[i].value.split('/')[0]) - 1
# velocity
index = int(events[i+1].value)
velocity = int(DEFAULT_VELOCITY_BINS[index])
# pitch
pitch = int(events[i+2].value)
# duration
index = int(events[i+3].value)
duration = DEFAULT_DURATION_BINS[index]
# adding
temp_notes.append([position, velocity, pitch, duration])
elif events[i].name == 'Position' and events[i+1].name == 'Chord':
position = int(events[i].value.split('/')[0]) - 1
temp_chords.append([position, events[i+1].value])
elif events[i].name == 'Position' and \
events[i+1].name == 'Tempo Class' and \
events[i+2].name == 'Tempo Value':
position = int(events[i].value.split('/')[0]) - 1
if events[i+1].value == 'slow':
tempo = DEFAULT_TEMPO_INTERVALS[0].start + int(events[i+2].value)
elif events[i+1].value == 'mid':
tempo = DEFAULT_TEMPO_INTERVALS[1].start + int(events[i+2].value)
elif events[i+1].value == 'fast':
tempo = DEFAULT_TEMPO_INTERVALS[2].start + int(events[i+2].value)
temp_tempos.append([position, tempo])
# get specific time for notes
ticks_per_beat = DEFAULT_RESOLUTION
ticks_per_bar = DEFAULT_RESOLUTION * 4 # assume 4/4
notes = []
current_bar = 0
for note in temp_notes:
if note == 'Bar':
current_bar += 1
else:
position, velocity, pitch, duration = note
# position (start time)
current_bar_st = current_bar * ticks_per_bar
current_bar_et = (current_bar + 1) * ticks_per_bar
flags = np.linspace(current_bar_st, current_bar_et, DEFAULT_FRACTION, endpoint=False, dtype=int)
st = flags[position]
# duration (end time)
et = st + duration
notes.append(miditoolkit.Note(velocity, pitch, st, et))
# get specific time for chords
if len(temp_chords) > 0:
chords = []
current_bar = 0
for chord in temp_chords:
if chord == 'Bar':
current_bar += 1
else:
position, value = chord
# position (start time)
current_bar_st = current_bar * ticks_per_bar
current_bar_et = (current_bar + 1) * ticks_per_bar
flags = np.linspace(current_bar_st, current_bar_et, DEFAULT_FRACTION, endpoint=False, dtype=int)
st = flags[position]
chords.append([st, value])
# get specific time for tempos
tempos = []
current_bar = 0
for tempo in temp_tempos:
if tempo == 'Bar':
current_bar += 1
else:
position, value = tempo
# position (start time)
current_bar_st = current_bar * ticks_per_bar
current_bar_et = (current_bar + 1) * ticks_per_bar
flags = np.linspace(current_bar_st, current_bar_et, DEFAULT_FRACTION, endpoint=False, dtype=int)
st = flags[position]
tempos.append([int(st), value])
# write
if prompt_path:
midi = miditoolkit.midi.parser.MidiFile(prompt_path)
#
last_time = DEFAULT_RESOLUTION * 4 * 4
# note shift
for note in notes:
note.start += last_time
note.end += last_time
midi.instruments[0].notes.extend(notes)
# tempo changes
temp_tempos = []
for tempo in midi.tempo_changes:
if tempo.time < DEFAULT_RESOLUTION*4*4:
temp_tempos.append(tempo)
else:
break
for st, bpm in tempos:
st += last_time
temp_tempos.append(miditoolkit.midi.containers.TempoChange(bpm, st))
midi.tempo_changes = temp_tempos
# write chord into marker
if len(temp_chords) > 0:
for c in chords:
midi.markers.append(
miditoolkit.midi.containers.Marker(text=c[1], time=c[0]+last_time))
else:
midi = miditoolkit.midi.parser.MidiFile()
midi.ticks_per_beat = DEFAULT_RESOLUTION
# write instrument
inst = miditoolkit.midi.containers.Instrument(0, is_drum=False)
inst.notes = notes
midi.instruments.append(inst)
# write tempo
tempo_changes = []
for st, bpm in tempos:
tempo_changes.append(miditoolkit.midi.containers.TempoChange(bpm, st))
midi.tempo_changes = tempo_changes
# write chord into marker
if len(temp_chords) > 0:
for c in chords:
midi.markers.append(
miditoolkit.midi.containers.Marker(text=c[1], time=c[0]))
# write
midi.dump(output_path)