-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
72 lines (54 loc) · 2.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Main file
We will run the whole program from here
"""
import torch
import hydra
from train import train
from dataset import FaceMaskDataset
from torch.utils.data import DataLoader
from my_utils import main_utils, train_utils, data_utils
from my_utils.train_logger import TrainLogger
from omegaconf import DictConfig, OmegaConf
torch.backends.cudnn.benchmark = True
@hydra.main(config_path="cfg", config_name='cfg')
def main(cfg: DictConfig) -> None:
"""
Run the code following a given configuration
:param cfg: configuration file retrieved from hydra framework
"""
scheduler_flag = True
backbone = 'resnext50_32x4d'
main_utils.init(cfg)
logger = TrainLogger(exp_name_prefix=cfg['main']['experiment_name_prefix'], logs_dir=cfg['main']['paths']['logs'])
logger.write(OmegaConf.to_yaml(cfg))
# Set seed for results reproduction
main_utils.set_seed(cfg['main']['seed'])
# Load dataset
data_types = ['train', 'test']
train_dataset = FaceMaskDataset(image_dir=cfg['main']['paths']['train'], img_size=cfg['data']['img_size'],
phase='train')
eval_datasets = {
data_type: FaceMaskDataset(image_dir=cfg['main']['paths'][data_type], img_size=cfg['data']['img_size'],
phase='eval') for
data_type in data_types}
datasets_sizes = {data_type: len(eval_datasets[data_type]) for data_type in data_types}
batch_size = cfg['train']['batch_size']
train_loader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=0, collate_fn=data_utils.collate_fn)
eval_dataloaders = {data_type: DataLoader(eval_datasets[data_type], batch_size, shuffle=False, num_workers=0,
collate_fn=data_utils.collate_fn) for data_type in data_types}
# Init model
model = main_utils.init_rcnn_model(max_size=cfg['main']['max_img_size'], change_backbone=True, backbone=backbone)
print('is cuda: ', torch.cuda.is_available())
if torch.cuda.is_available():
model.to('cuda')
logger.write(main_utils.get_model_string(model))
# Run model
train_params = train_utils.get_train_params(cfg)
# Report metrics and hyper parameters to tensorboard
metrics = train(model, train_loader, eval_dataloaders, datasets_sizes, train_params, logger, data_types,
use_schedular=scheduler_flag)
hyper_parameters = main_utils.get_flatten_dict(cfg['train'])
logger.report_metrics_hyper_params(hyper_parameters, metrics)
if __name__ == '__main__':
main()