-
Notifications
You must be signed in to change notification settings - Fork 0
/
megan_toy.py
250 lines (214 loc) · 8.4 KB
/
megan_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import os, time
import numpy as np
import matplotlib as mpl
if os.environ.get('DISPLAY','') == '':
print('no display found. Using non-interactive Agg backend')
mpl.use('Agg')
import matplotlib.pyplot as plt
import torch
import models
import utils
from matplotlib.backends.backend_pdf import PdfPages
from tqdm import tqdm
parser = argparse.ArgumentParser(description='Train a generator on artificial data set.')
parser.add_argument('-lr', default=1e-3, type=float)
parser.add_argument('-batch_size',help='batch size. default 16',default=16,type=int)
parser.add_argument('-epoch',default=300,type=int)
parser.add_argument('-out',help='output folder.',type=str,required=True)
parser.add_argument('-title',help='title of the animation.',type=str,required=True)
parser.add_argument('-seed',help='seed. default 2019.',type=int)
parser.add_argument('-dataset', help='grid, spiral, ellipse, unbalanced.', default='grid', type=str)
args = parser.parse_args()
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
if args.seed is None:
args.seed = np.random.randint(0, 1000)
NUM_OF_POINTS = 2500
BATCH_SIZE = args.batch_size
NUM_OF_EPOCHS = args.epoch
out_directory = args.out
print(args)
if not os.path.exists(out_directory):
os.makedirs(out_directory)
print(args,file=open(out_directory+"args.txt","w"))
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.dataset == 'grid':
x_axis = np.linspace(-10, 10, 5)
y_axis = np.linspace(-10, 10, 5)
it = 0
x = torch.empty(NUM_OF_POINTS, 2, dtype=torch.float)
CLUSTER_SIZE = NUM_OF_POINTS // 25
for i in range(5):
for j in range(5):
x[it*CLUSTER_SIZE:(it+1)*CLUSTER_SIZE,0] = torch.randn(CLUSTER_SIZE) * 0.05 + x_axis[i]
x[it*CLUSTER_SIZE:(it+1)*CLUSTER_SIZE,1] = torch.randn(CLUSTER_SIZE) * 0.05 + y_axis[j]
it += 1
elif args.dataset == 'ellipse':
r = 4
th = torch.rand(NUM_OF_POINTS) * np.pi * 2.0
x = torch.empty(NUM_OF_POINTS, 2, dtype=torch.float)
x[:,0] = r * torch.cos(th)
x[:,1] = r * torch.sin(th)
x = torch.matmul(x, torch.randn(2, 2) * 0.5)+torch.randn(2)
elif args.dataset == 'spiral':
r = torch.sqrt(torch.linspace(0, 1, NUM_OF_POINTS)) * 780 * (2*np.pi)/360
dx = -torch.cos(r)*r + torch.rand(NUM_OF_POINTS) * (0.5)
dy = torch.sin(r)*r + torch.rand(NUM_OF_POINTS) * (0.5)
x = torch.stack([dx, dy]).t()
elif args.dataset == 'unbalanced':
x = torch.empty(NUM_OF_POINTS, 2, device=device)
x[:1250] = torch.randn(NUM_OF_POINTS//2, 2, device=device) * 0.25 + torch.tensor([-5., 5.], device=device)
x[1250:] = torch.randn(NUM_OF_POINTS//2, 2, device=device) * 2 + torch.tensor([5., -5.], device=device)
elif args.dataset == 'gmm':
x = torch.randn(NUM_OF_POINTS, 2, device=device)
k = 5
cluster_size = NUM_OF_POINTS // k
for i in range(k):
rand_std = torch.rand(1,2, device=device)*2 + 0.5
rand_mu = torch.rand(1,2, device=device)*24 - 12
x[i*cluster_size:(i+1)*cluster_size] = x[i*cluster_size:(i+1)*cluster_size] * rand_std + rand_mu
x = x.to(device)
z_dim = 2
z = torch.randn(NUM_OF_POINTS, z_dim, device=device)
num_g = 8
generator = models.MultiMEGAN(in_features=z_dim, out_features=2, num_of_generators=num_g)
discriminator = models.MLP(layer_info=[2, 20, 20, 20, 20, 1], activation=torch.nn.ReLU(), normalization=None)
generator.to(device)
discriminator.to(device)
print("GENERATOR")
print(generator)
print("DISCRIMINATOR")
print(discriminator)
print("G num of params: %d" % utils.get_parameter_count(generator))
print("D num of params: %d" % utils.get_parameter_count(discriminator))
optimG = torch.optim.Adam(lr=args.lr, betas=(0.5, 0.999), params=generator.parameters(), amsgrad=True)
optimD = torch.optim.Adam(lr=args.lr, betas=(0.5, 0.999), params=discriminator.parameters(), amsgrad=True)
optim_gating = torch.optim.Adam(
lr=args.lr,
betas=(0.5, 0.999),
params=[{"params": generator.gating.parameters()}, {"params": generator.feat_projector.parameters()}], amsgrad=True)
bce_with_logits = torch.nn.BCEWithLogitsLoss()
mse_loss = torch.nn.MSELoss()
print("Training starts...")
size = x.shape[0]
loop_per_epoch = size // BATCH_SIZE
total_loss = torch.zeros(NUM_OF_EPOCHS)
timesteps = []
d_fields = []
real_total = []
fake_total = []
fid_total = []
disc_total = []
gen_total = []
##
# stuff for animation
xv, yv = torch.meshgrid(torch.linspace(-30, 30, 40), torch.linspace(-30, 30, 40))
field = torch.stack([xv.contiguous().view(-1), yv.contiguous().view(-1)], dim=1).to(device)
##
for e in range(NUM_OF_EPOCHS):
R = torch.randperm(size)
gen_avg_loss = 0.0
disc_avg_loss = 0.0
g_count = 0
d_count = 0
start_time = time.time()
for i in tqdm(range(loop_per_epoch)):
# train discriminator with real data
optimD.zero_grad()
x_real = x[R[i*args.batch_size:(i+1)*args.batch_size]]
x_real = x_real.to(device)
d_real = discriminator(x_real)
d_real_loss = bce_with_logits(d_real, torch.ones_like(d_real,device=device))
# train discriminator with fake data
x_fake, _ = generator(torch.randn(args.batch_size, z_dim, device=device))
d_fake = discriminator(x_fake)
d_fake_loss = bce_with_logits(d_fake, torch.zeros_like(d_fake,device=device))
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
optimD.step()
disc_avg_loss += d_loss.item()
d_count += 1
# train generator
for p in discriminator.parameters():
p.requires_grad = False
optimG.zero_grad()
x_fake, gating = generator(torch.randn(args.batch_size, z_dim, device=device))
g_loss = discriminator(x_fake)
g_loss = bce_with_logits(g_loss, torch.ones_like(g_loss, device=device))
g_loss.backward(retain_graph=True)
optimG.step()
gen_avg_loss += g_loss.item()
g_count += 1
# train gating
optim_gating.zero_grad()
softmax = utils.gumbel_softmax_sample(gating)
dist = softmax.sum(dim=0) / softmax.sum()
target = torch.ones(num_g, device=device, dtype=torch.float) / num_g
dist_loss = mse_loss(dist, target)*10
dist_loss.backward()
optim_gating.step()
for p in discriminator.parameters():
p.requires_grad = True
finish_time = time.time()
print("epoch: %d - disc loss: %.5f - gen loss: %.5f - time elapsed: %.5f" % (e+1, disc_avg_loss / d_count, gen_avg_loss / g_count, finish_time-start_time))
gen_total.append(gen_avg_loss/g_count)
disc_total.append(disc_avg_loss/d_count)
generator.eval()
discriminator.eval()
with torch.no_grad():
fake_samples, _ = generator(z)
ff = discriminator(field)
ff = torch.sigmoid(ff).cpu().numpy()
indexes = (ff*100).astype(np.int32).reshape(-1)
d_fields.append(indexes)
data = np.zeros((size * 2,2))
data[:size] = x.cpu()
data[size:] = fake_samples.cpu().numpy()
timesteps.append(data)
fake_acc, real_acc = utils.nn_accuracy(p_real=x, p_fake=fake_samples, k=5)
fid = utils.FID_score(x.cpu(), fake_samples.cpu())
print("fake acc: %.5f - real acc: %.5f - FID: %.5f" % (fake_acc, real_acc, fid))
fake_total.append(fake_acc)
real_total.append(real_acc)
fid_total.append(fid)
discriminator.train()
generator.train()
plt.plot(fake_total)
plt.plot(real_total)
plt.plot((np.array(fake_total)+np.array(real_total))*0.5, '--')
plt.legend(["fake acc.", "real acc.", "total acc."])
pp = PdfPages(out_directory+'accuracy.pdf')
pp.savefig()
pp.close()
plt.close()
plt.plot(disc_total)
plt.plot(gen_total)
plt.legend(["disc. loss", "gen. loss"])
pp = PdfPages(out_directory+'loss.pdf')
pp.savefig()
pp.close()
plt.close()
plt.plot(fid_total)
pp = PdfPages(out_directory+'fid.pdf')
pp.savefig()
pp.close()
plt.close()
torch.save(generator.cpu().state_dict(),out_directory+'gen.ckpt')
torch.save(discriminator.cpu().state_dict(),out_directory+'disc.ckpt')
np.save(out_directory+"fid.npy", fid_total)
np.save(out_directory+"fake.npy", fake_total)
np.save(out_directory+"real.npy", real_total)
np.save(out_directory+"g_loss.npy", gen_total)
np.save(out_directory+"d_loss.npy", disc_total)
utils.save_animation_withdisc(
name=out_directory+'animation.mp4',
timesteps=timesteps,
d_field=d_fields,
lims=(-15, 15),
title=args.title,
alpha=0.5)