-
Notifications
You must be signed in to change notification settings - Fork 18
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Inference on AVA and JHMDB Needs Maintenance and Necessary Files #14
Comments
For JHMDB Inference
modify the loading detr part according to the built model embed_query input dimensions to avoid this problem tubelet-transformer/utils/model_utils.py Line 25 in f610c97
pretrained_dict.update({k: v[:query_size]})
if query_size == model.module.query_embed.weight.shape[0]: continue
if v.shape[0] < model.module.query_embed.weight.shape[0]: # In case the pretrained model does not align
query_embed_zeros=torch.zeros(model.module.query_embed.weight.shape)
pretrained_dict.update({k: query_embed_zeros})
else:
pretrained_dict.update({k: v[:model.module.query_embed.weight.shape[0]]}) Got different mAP as the table shows per_class [0.96529908 0.4870422 0.81740977 0.64671594 0.99981187 0.48678173
0.72522214 0.70157535 0.99132313 0.99332738 0.92539198 0.63780982
0.6607778 0.89695387 0.78694818 0.42965094 0.26324953 0.94429166
0.27346689 0.68134081 0.87238637 nan nan nan]
{'PascalBoxes_Precision/[email protected]': 0.7231798302410739, 'PascalBoxes_PerformanceByCategory/[email protected]/Basketball': 0.9652990848728149, 'PascalBoxes_PerformanceByCategory/[email protected]/BasketballDunk': 0.4870421987013735, 'PascalBoxes_PerformanceByCategory/[email protected]/Biking': 0.8174097664543525, 'PascalBoxes_PerformanceByCategory/[email protected]/CliffDiving': 0.6467159401389935, 'PascalBoxes_PerformanceByCategory/[email protected]/CricketBowling': 0.9998118686054533, 'PascalBoxes_PerformanceByCategory/[email protected]/Diving': 0.48678173366600064, 'PascalBoxes_PerformanceByCategory/[email protected]/Fencing': 0.7252221388068574, 'PascalBoxes_PerformanceByCategory/[email protected]/FloorGymnastics': 0.7015753486207187, 'PascalBoxes_PerformanceByCategory/[email protected]/GolfSwing': 0.9913231289322941, 'PascalBoxes_PerformanceByCategory/[email protected]/HorseRiding': 0.9933273801597415, 'PascalBoxes_PerformanceByCategory/[email protected]/IceDancing': 0.9253919821730238, 'PascalBoxes_PerformanceByCategory/[email protected]/LongJump': 0.637809816668955, 'PascalBoxes_PerformanceByCategory/[email protected]/PoleVault': 0.6607777957457814, 'PascalBoxes_PerformanceByCategory/[email protected]/RopeClimbing': 0.8969538737505489, 'PascalBoxes_PerformanceByCategory/[email protected]/SalsaSpin': 0.7869481765834933, 'PascalBoxes_PerformanceByCategory/[email protected]/SkateBoarding': 0.42965094009542815, 'PascalBoxes_PerformanceByCategory/[email protected]/Skiing': 0.26324952994810963, 'PascalBoxes_PerformanceByCategory/[email protected]/Skijet': 0.9442916605769802, 'PascalBoxes_PerformanceByCategory/[email protected]/SoccerJuggling': 0.27346688938240526, 'PascalBoxes_PerformanceByCategory/[email protected]/Surfing': 0.681340807090747, 'PascalBoxes_PerformanceByCategory/[email protected]/TennisSwing': 0.8723863740884812, 'PascalBoxes_PerformanceByCategory/[email protected]/TrampolineJumping': nan, 'PascalBoxes_PerformanceByCategory/[email protected]/VolleyballSpiking': nan, 'PascalBoxes_PerformanceByCategory/[email protected]/WalkingWithDog': nan}
mAP: 0.72318 |
Thank you for your correction.Do you find any code about video map inference. I want to reproduce the video map of UCF101-24. |
Thanks for taking your time to write this, helped me greatly. It's a shame that the codebase for this model is such a mess as-is. |
For the version I am using,
AVA2.1 inference needs several modifications:
tubelet-transformer/datasets/ava_frame.py
Line 135 in f610c97
For function loadvideo, the function should be reading images with the video name.
video_frame_list = sorted(glob(video_frame_path + vid + '/*.jpg'))
Change the path here for the annotations.
tubelet-transformer/evaluates/evaluate_ava.py
Line 36 in f610c97
The fixes above would get the number listed in the README table. But there would still be a tensorboard error "EOFerror". Add lines after
tubelet-transformer/eval_tuber_ava.py
Line 48 in f610c97
AVA2.2 Inference
The text was updated successfully, but these errors were encountered: