-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcomplex_net.py
66 lines (53 loc) · 1.96 KB
/
complex_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
from torch.autograd import Variable
class Branch(nn.Module):
def __init__(self,b2):
"""Constructs each branch necessary depending on input
Args:
b2(nn.Module()): An nn.Conv2d() is passed with specific params
"""
super(Branch, self).__init__()
self.b = nn.MaxPool2d(kernel_size=2, stride=2)
self.b2 = b2
def forward(self,x):
x = self.b(x)
y = [self.b2(x).view(-1), self.b2(x).view(-1)]
z = torch.cat((y[0],y[1]))
return z
class ComplexNet(nn.Module):
def __init__(self, m1, m2):
"""Constructs the base of the network and attaches the branches
Args:
m1(nn.Sequential()): The first segment of the base network
m2(nn.Sequential()): The second segment of the base network
"""
super(ComplexNet, self).__init__()
self.net1 = m1
self.net2 = m2
self.net3 = nn.Conv2d(128,256,kernel_size=3,padding=1)
self.branch1 = Branch(nn.Conv2d(64,64,kernel_size=3,padding=1))
self.branch2 = Branch(nn.Conv2d(128,256,kernel_size=3, padding=1))
def forward(self, x):
x = self.net1(x)
x1 = self.branch1(x)
y = self.net2(x)
x2 = self.branch2(y)
x3 = self.net3(y).view(-1)
output = torch.cat((x1,x2,x3),0)
return output
def make_layers(params, ch):
"""Constructs the base segments of the network and returns as nn.Sequential()
Args:
params(int[]): The Conv2d parameters for input and output channels
ch(int): The initial input channel parameter for the first Conv2d
"""
layers = []
channels = ch
for p in params:
conv2d = nn.Conv2d(channels, p, kernel_size=3, padding=1)
layers += [conv2d, nn.ReLU(inplace=True)]
channels = p
return nn.Sequential(*layers)
def cnet():
return ComplexNet(make_layers([64,64],3),make_layers([128,128],64))