forked from rnaimehaom/saltnpeppr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_example.py
65 lines (51 loc) · 1.98 KB
/
inference_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
from model import SALTnPEPPR
from data import ProteinPeptideDataModule
import pytorch_lightning as pl
import os
from Bio import SeqIO
import pickle
import json
import esm
import itertools
import string
import pandas as pd
from torch.nn import LogSoftmax
binder_name = 'ACE2'
target_name = 'RBD_short'
data_path = '/peptides/protein_peptide/data'
binder_fasta = '/fastas/'+target_name+'/'+binder_name+'.fasta'
target_MSA = '/hhr_outs/'+target_name+'.msa'
model_path ='path_to_model_weights'
deletekeys = dict.fromkeys(string.ascii_lowercase)
deletekeys["."] = None
deletekeys["*"] = None
translation = str.maketrans(deletekeys)
def read_sequence(filename):
""" Reads the first (reference) sequences from a fasta or MSA file."""
record = next(SeqIO.parse(filename, "fasta"))
return record.description, str(record.seq)
def remove_insertions(sequence):
""" Removes any insertions into the sequence. Needed to load aligned sequences in an MSA. """
return sequence.translate(translation)
def read_msa(filename, nseq):
""" Reads the first nseq sequences from an MSA file, automatically removes insertions."""
return [(record.description, remove_insertions(str(record.seq)))
for record in itertools.islice(SeqIO.parse(filename, "fasta"), nseq)]
# binder FASTA
_, binder_seq = read_sequence(data_path+binder_fasta)
binder_aa_list = []
for i in range(len(binder_seq)):
binder_aa_list.append(binder_seq[i])
alphabet = esm.Alphabet.from_architecture('ESM-1b')
batch_converter = alphabet.get_batch_converter()
binder_tuple = [(1, binder_seq)]
batch_labels, batch_strs, batch_tokens = batch_converter(binder_tuple)
### model
model = SALTnPEPPR.load_from_checkpoint(model_path)
model.eval()
scores = model(batch_tokens, None)
scores = torch.exp(softmax(scores))
npscores = scores[:,1].detach().numpy()
df = pd.DataFrame({'AA':binder_aa_list, 'Binder Prob': npscores, 'Source': binder_name,'Target':target_name})
df.to_csv('./'+target_name+'_'+binder_name+'_prediction.csv')