-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
127 lines (104 loc) · 4.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from keras.preprocessing.image import ImageDataGenerator
from keras.backend import clear_session
from tensorflow.keras.optimizers import SGD, Adam
from pathlib import Path
from keras.applications.mobilenet_v2 import MobileNetV2
from keras.models import Sequential, Model, load_model
from keras.layers import Dense, Dropout, Flatten, AveragePooling2D, BatchNormalization
from keras import initializers, regularizers
from pathlib import Path
from keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau, History, LearningRateScheduler
from datetime import datetime
from time import time
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import warnings
import os
# Ignore Warnings
warnings.filterwarnings("ignore")
def main():
# Dataset Folders
train_neutral = (len([iq for iq in os.scandir('dataset/train/neutral')]))
test_neutral = (len([iq for iq in os.scandir('dataset/test/neutral')]))
train_porn = (len([iq for iq in os.scandir('dataset/train/porn')]))
test_porn = (len([iq for iq in os.scandir('dataset/test/porn')]))
train_sexy = (len([iq for iq in os.scandir('dataset/train/sexy')]))
test_sexy = (len([iq for iq in os.scandir('dataset/test/sexy')]))
# Test & Train Lists
train_data = [train_neutral, train_porn, train_sexy]
test_data = [test_neutral, test_porn, test_sexy]
print(f'Total number of train data is : {train_data[0]} + {train_data[1]} + {train_data[2]} = {sum(train_data)}')
print(f'Total number of test data is : {test_data[0]} + {test_data[1]} + {test_data[2]} = {sum(test_data)}')
train_path =r"dataset/train"
test_path = r"dataset/test"
print("Example of the data Neutral and Sexy category")
f, (ax1, ax2) = plt.subplots(1, 2)
img=mpimg.imread(test_path+"/neutral/ffdb5729-8bac-4add-bbc1-41d1e428c842.jpg")
ax1.imshow(img)
img=mpimg.imread(test_path+"/sexy/ffc15b09-10a0-4753-9adf-d38eb53cf8a1.jpg")
ax2.imshow(img)
# As we know the input size in ImageNet was 224 so we have to resize our images accordingly
size = 224
epochs = 100
steps = 500
train_data_generation = ImageDataGenerator(
rescale=1./255,
rotation_range=30,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
channel_shift_range=20,
horizontal_flip=True
)
validation_data_generation = ImageDataGenerator(
rescale=1./255 #need float values
)
train_generator = train_data_generation.flow_from_directory(
train_path,
target_size=(size, size),
class_mode='categorical',
batch_size = 64
)
validation_generator = validation_data_generation.flow_from_directory(
test_path,
target_size=(size, size),
class_mode='categorical',
batch_size = 64
)
conv_m = MobileNetV2(weights='imagenet', include_top=False, input_shape=(size, size, 3))
conv_m.trainable = False
conv_m.summary()
model = Sequential()
model.add(conv_m)
model.add(AveragePooling2D(pool_size=(7, 7)))
model.add(Flatten())
model.add(Dense(32, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(3, activation='softmax'))
model.summary()
filepath = "bestweight.h5"
checkpoint = ModelCheckpoint("weights{epoch:05d}.h5", monitor='val_acc', verbose=1, save_best_only=True, mode='max')
lr_reduce = ReduceLROnPlateau(monitor='val_loss', factor=np.sqrt(0.1), patience=5, verbose=1, cooldown=0, min_lr=0.5e-6)
callbacks = [checkpoint, lr_reduce]
model.compile(
loss='categorical_crossentropy',
optimizer=SGD(lr = 0.1, momentum = 0.9),
metrics=['accuracy']
)
start = datetime.now()
history = model.fit_generator(
train_generator,
callbacks=callbacks,
epochs=100,
steps_per_epoch=10,
validation_data=validation_generator,
validation_steps=10,
initial_epoch = 30
)
print("time taken : ", datetime.now() - start)
if __name__ == '__main__':
main()