forked from zifn/qchem_nitrobenzene
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNB_rotated_static_gamma_6-31Gstar.out
695 lines (561 loc) · 34.9 KB
/
NB_rotated_static_gamma_6-31Gstar.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
************************************************************************
*************** Dalton - An Electronic Structure Program ***************
************************************************************************
This is output from DALTON release Dalton2016.2 (2016)
( Web site: http://daltonprogram.org )
----------------------------------------------------------------------------
NOTE:
Dalton is an experimental code for the evaluation of molecular
properties using (MC)SCF, DFT, CI, and CC wave functions.
The authors accept no responsibility for the performance of
the code or for the correctness of the results.
The code (in whole or part) is provided under a licence and
is not to be reproduced for further distribution without
the written permission of the authors or their representatives.
See the home page "http://daltonprogram.org" for further information.
If results obtained with this code are published,
the appropriate citations would be both of:
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
P. Dahle, E. K. Dalskov, U. Ekstroem,
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
P. Joergensen, J. Kauczor, S. Kirpekar,
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
and H. Agren,
"The Dalton quantum chemistry program system",
WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)
and
Dalton, a Molecular Electronic Structure Program,
Release Dalton2016.2 (2016), see http://daltonprogram.org
----------------------------------------------------------------------------
Authors in alphabetical order (major contribution(s) in parenthesis):
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
Ove Christiansen, Aarhus University, Denmark (CC module)
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
Paal Dahle, University of Oslo, Norway (Parallelization)
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
Kasper Hald, Aarhus University, Denmark (CC module)
Asger Halkier, Aarhus University, Denmark (CC module)
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Anders Osted, Copenhagen University, Denmark (QM/MM)
Martin J. Packer, University of Sheffield, UK (SOPPA)
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
David P. Tew, University of Bristol, England (CCSD(R12))
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
--------------------------------------------------------------------------------
Date and time (Linux) : Sat Nov 24 13:58:42 2018
Host name : Mechanist
* Work memory size : 64000000 = 488.28 megabytes.
* Directories for basis set searches:
1) /home/Main/dalton/build_gnu_builtin_2016
2) /home/Main/dalton/build_gnu_builtin_2016/basis
Compilation information
-----------------------
Who compiled | Main
Host | Mechanist
System | Linux-4.4.0-17134-Microsoft
CMake generator | Unix Makefiles
Processor | x86_64
64-bit integers | OFF
MPI | OFF
Fortran compiler | /home/Main/psi4conda/bin/gfortran
Fortran compiler version | GNU Fortran (GCC) 5.2.0
C compiler | /home/Main/psi4conda/bin/gcc
C compiler version | gcc (GCC) 5.2.0
C++ compiler | /home/Main/psi4conda/bin/g++
C++ compiler version | g++ (GCC) 5.2.0
Static linking | OFF
Last Git revision | 130ffaa0613bb3af6cac766fc8183d6df7d68917
Git branch | release/2016
Configuration time | 2018-11-08 14:06:24.912435
Content of the .dal input file
----------------------------------
**DALTON INPUT
.RUN RESPONSE
.DIRECT
**WAVE FUNCTIONS
.DFT
B3LYP
**RESPONSE
*CUBIC
.DIPLEN
**END OF DALTON INPUT
Content of the .mol file
----------------------------
BASIS
6-31G*
nitrobenzene
-----------
Atomtypes=4 Angstrom
Charge=6.0 Atoms=6
C1 0.53586175637875730 -1.130144079065937800 -0.401568006029394000
C2 1.86295342056128880 -1.261283358432358600 -0.004591703041508497
C3 2.47617684842809900 -0.251125322126804700 0.737033082778232700
C4 1.76455291480099370 0.897028530525922500 1.086090069641705000
C5 0.43681197355060775 1.042357481974351500 0.696340338372404900
C6 -0.15483907103436842 0.022892869108663512 -0.042636781643002365
Charge=1.0 Atoms=5
H1 2.41783503421020730 -2.153247877123786000 -0.274943210823470840
H2 3.51153712712080000 -0.358947808613471400 1.043798936522883500
H3 2.24301450407709570 1.681301625659504100 1.662784396092357000
H4 -0.14107662338424765 1.920612337052382000 0.951570739616678300
H5 0.03299385407118749 -1.895838041802216000 -0.977122623182572800
Charge=7.0 Atoms=1
N -1.56784197706596500 0.170074311550342140 -0.461345202900563000
Charge=8.0 Atoms=2
Oa -2.06419932146861740 -0.740623738594511000 -1.110654473732936200
Ob -2.15265560171339840 1.193378341026107400 -0.132414477138042270
*******************************************************************
*********** Output from DALTON general input processing ***********
*******************************************************************
--------------------------------------------------------------------------------
Overall default print level: 0
Print level for DALTON.STAT: 1
AO-direct calculation (in sections where implemented)
HERMIT 1- and 2-electron integral sections will be executed
"Old" integral transformation used (limited to max 255 basis functions)
Wave function sections will be executed (SIRIUS module)
Dynamic molecular response properties section will be executed (RESPONSE module)
--------------------------------------------------------------------------------
****************************************************************************
*************** Output of molecule and basis set information ***************
****************************************************************************
The two title cards from your ".mol" input:
------------------------------------------------------------------------
1: nitrobenzene
2: -----------
------------------------------------------------------------------------
Coordinates are entered in Angstrom and converted to atomic units.
- Conversion factor : 1 bohr = 0.52917721 A
Atomic type no. 1
--------------------
Nuclear charge: 6.00000
Number of symmetry independent centers: 6
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 6 :
"/home/Main/dalton/build_gnu_builtin_2016/basis/6-31G*"
Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*
Atomic type no. 2
--------------------
Nuclear charge: 1.00000
Number of symmetry independent centers: 5
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 1 :
"/home/Main/dalton/build_gnu_builtin_2016/basis/6-31G*"
Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*
Atomic type no. 3
--------------------
Nuclear charge: 7.00000
Number of symmetry independent centers: 1
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 7 :
"/home/Main/dalton/build_gnu_builtin_2016/basis/6-31G*"
Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*
Atomic type no. 4
--------------------
Nuclear charge: 8.00000
Number of symmetry independent centers: 2
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 8 :
"/home/Main/dalton/build_gnu_builtin_2016/basis/6-31G*"
Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*
SYMADD: Requested addition of symmetry
--------------------------------------
Symmetry test threshold: 5.00E-06
@ The molecule is centered at center of mass and rotated
@ so principal axes of inertia are along coordinate axes.
Symmetry class found: C(1)
Symmetry Independent Centres
----------------------------
8 : -0.00055266 2.04951907 -4.20498269 Isotope 1
8 : 0.00055648 -2.04954986 -4.20498111 Isotope 1
7 : -0.00000746 -0.00001087 -3.13421683 Isotope 1
6 : -0.00002045 0.00002582 -0.33540782 Isotope 1
6 : -0.00022357 -2.30183734 0.93464335 Isotope 1
6 : 0.00025498 2.30187704 0.93459076 Isotope 1
6 : 0.00028498 2.28678482 3.56388930 Isotope 1
6 : -0.00028070 -2.28681290 3.56391605 Isotope 1
6 : -0.00001960 0.00000813 4.87599494 Isotope 1
1 : -0.00043851 -4.04364237 -0.13577450 Isotope 1
1 : 0.00038068 4.04373459 -0.13573681 Isotope 1
1 : 0.00065315 4.06280277 4.58732407 Isotope 1
1 : -0.00039208 -4.06282622 4.58736221 Isotope 1
1 : -0.00010825 0.00002841 6.92676304 Isotope 1
No symmetry elements were found.
SYMGRP: Point group information
-------------------------------
@ Full point group is: C(1)
@ Represented as: C1
Isotopic Masses
---------------
C1 12.000000
C2 12.000000
C3 12.000000
C4 12.000000
C5 12.000000
C6 12.000000
H1 1.007825
H2 1.007825
H3 1.007825
H4 1.007825
H5 1.007825
N 14.003074
Oa 15.994915
Ob 15.994915
Total mass: 123.032029 amu
Natural abundance: 92.716 %
Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000
Atoms and basis sets
--------------------
Number of atom types : 4
Total number of atoms: 14
Basis set used is "6-31G*" from the basis set library.
label atoms charge prim cont basis
----------------------------------------------------------------------
C6 6 6.0000 27 14 [10s4p1d|3s2p1d]
H5 5 1.0000 4 2 [4s|2s]
N 1 7.0000 27 14 [10s4p1d|3s2p1d]
Ob 2 8.0000 27 14 [10s4p1d|3s2p1d]
----------------------------------------------------------------------
total: 14 64.0000 263 136
----------------------------------------------------------------------
Spherical harmonic basis used.
Threshold for neglecting AO integrals: 1.00D-12
Interatomic separations (in Angstrom):
--------------------------------------
C1 C2 C3 C4 C5 C6
------ ------ ------ ------ ------ ------
C1 : 0.000000
C2 : 1.391388 0.000000
C3 : 2.415349 1.395159 0.000000
C4 : 2.798613 2.420244 1.395173 0.000000
C5 : 2.436181 2.798561 2.415318 1.391374 0.000000
C6 : 1.391184 2.392079 2.757756 2.392113 1.391203 0.000000
H1 : 2.145833 1.084705 2.155358 3.403436 3.883264 3.377604
H2 : 3.396833 2.152013 1.085220 2.152027 3.396810 3.842975
H3 : 3.883317 3.403439 2.155378 1.084706 2.145840 3.377645
H4 : 3.405341 3.880057 3.407710 2.167312 1.081864 2.142423
H5 : 1.081863 2.167309 3.407720 3.880109 3.405369 2.142446
N : 2.473805 3.745366 4.238822 3.745380 2.473813 1.481066
Oa : 2.723022 4.113027 4.926314 4.708177 3.563609 2.317170
Ob : 3.563611 4.708165 4.926319 4.113040 2.723047 2.317189
H1 H2 H3 H4 H5 N
------ ------ ------ ------ ------ ------
H1 : 0.000000
H2 : 2.480882 0.000000
H3 : 4.299898 2.480909 0.000000
H4 : 4.964746 4.306563 2.499397 0.000000
H5 : 2.499357 4.306555 4.964799 4.279656 0.000000
N : 4.617163 5.324041 4.617181 2.663902 2.663962 0.000000
Oa : 4.773107 5.989673 5.666549 3.877287 2.398035 1.223660
Ob : 5.666534 5.989681 4.773125 2.397987 3.877351 1.223664
Oa Ob
------ ------
Oa : 0.000000
Ob : 2.169134 0.000000
Max interatomic separation is 5.9897 Angstrom ( 11.3189 Bohr)
between atoms 14 and 8, "Ob " and "H2 ".
Min HX interatomic separation is 1.0819 Angstrom ( 2.0444 Bohr)
Min YX interatomic separation is 1.2237 Angstrom ( 2.3124 Bohr)
Bond distances (Angstrom):
--------------------------
atom 1 atom 2 distance
------ ------ --------
bond distance: C2 C1 1.391388
bond distance: C3 C2 1.395159
bond distance: C4 C3 1.395173
bond distance: C5 C4 1.391374
bond distance: C6 C1 1.391184
bond distance: C6 C5 1.391203
bond distance: H1 C2 1.084705
bond distance: H2 C3 1.085220
bond distance: H3 C4 1.084706
bond distance: H4 C5 1.081864
bond distance: H5 C1 1.081863
bond distance: N C6 1.481066
bond distance: Oa N 1.223660
bond distance: Ob N 1.223664
Bond angles (degrees):
----------------------
atom 1 atom 2 atom 3 angle
------ ------ ------ -----
bond angle: C2 C1 C6 118.558
bond angle: C2 C1 H5 121.899
bond angle: C6 C1 H5 119.544
bond angle: C1 C2 C3 120.175
bond angle: C1 C2 H1 119.624
bond angle: C3 C2 H1 120.201
bond angle: C2 C3 C4 120.308
bond angle: C2 C3 H2 119.846
bond angle: C4 C3 H2 119.846
bond angle: C3 C4 C5 120.173
bond angle: C3 C4 H3 120.202
bond angle: C5 C4 H3 119.626
bond angle: C4 C5 C6 118.560
bond angle: C4 C5 H4 121.900
bond angle: C6 C5 H4 119.540
bond angle: C1 C6 C5 122.226
bond angle: C1 C6 N 118.888
bond angle: C5 C6 N 118.887
bond angle: C6 N Oa 117.584
bond angle: C6 N Ob 117.585
bond angle: Oa N Ob 124.831
Principal moments of inertia (u*A**2) and principal axes
--------------------------------------------------------
IA 126.930795 0.000000 -0.000000 1.000000
IB 393.848327 0.000000 1.000000 0.000000
IC 520.779114 1.000000 0.000000 0.000000
Rotational constants
--------------------
@ The molecule is planar.
A B C
3981.5319 1283.1818 970.4287 MHz
0.132810 0.042802 0.032370 cm-1
@ Nuclear repulsion energy : 412.292741078747 Hartree
.---------------------------------------.
| Starting in Integral Section (HERMIT) |
`---------------------------------------'
***************************************************************************************
****************** Output from **INTEGRALS input processing (HERMIT) ******************
***************************************************************************************
- Using defaults, no **INTEGRALS input found
Default print level: 1
* Nuclear model: Point charge
Calculation of one-electron Hamiltonian integrals.
Center of mass (bohr): 0.000000000000 0.000000000000 0.000000000000
Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000
Gauge origin (bohr): 0.000000000000 0.000000000000 0.000000000000
Dipole origin (bohr): 0.000000000000 0.000000000000 0.000000000000
************************************************************************
************************** Output from HERINT **************************
************************************************************************
Total CPU time used in HERMIT: 0.20 seconds
Total wall time used in HERMIT: 0.20 seconds
.----------------------------------.
| End of Integral Section (HERMIT) |
`----------------------------------'
.--------------------------------------------.
| Starting in Wave Function Section (SIRIUS) |
`--------------------------------------------'
*** Output from Huckel module :
Using EWMO model: T
Using EHT model: F
Number of Huckel orbitals each symmetry: 50
EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
which normally is better than Extended Huckel Theory.
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
Huckel EWMO eigenvalues for symmetry : 1
-20.684973 -20.683624 -15.677412 -11.364913 -11.354591
-11.354249 -11.347760 -11.347628 -11.344081 -2.025966
-1.861338 -1.530803 -1.383369 -1.362625 -1.019537
-0.986977 -0.924384 -0.896487 -0.821334 -0.739037
-0.672143 -0.665211 -0.605148 -0.585528 -0.572246
-0.534940 -0.491629 -0.480032 -0.477420 -0.473551
-0.409819 -0.403823 -0.343893 -0.249359 -0.237974
-0.223681 -0.197499 -0.179251 -0.167734 -0.133272
-0.121678 -0.121437 -0.119749 -0.116848 -0.100607
-0.098836 -0.098364 -0.093445 -0.082545 -0.074449
**********************************************************************
*SIRIUS* a direct, restricted step, second order MCSCF program *
**********************************************************************
Date and time (Linux) : Sat Nov 24 13:58:42 2018
Host name : Mechanist
Title lines from ".mol" input file:
nitrobenzene
-----------
Print level on unit LUPRI = 2 is 0
Print level on unit LUW4 = 2 is 5
@ Restricted, closed shell Kohn-Sham DFT calculation.
@ Time-dependent Kohn-Sham DFT calculation (TD-DFT).
Fock matrices are calculated directly without use of integrals on disk.
Initial molecular orbitals are obtained according to
".MOSTART EWMO " input option
Wave function specification
============================
@ Wave function type --- KS-DFT ---
@ Number of closed shell electrons 64
@ Number of electrons in active shells 0
@ Total charge of the molecule 0
@ Spin multiplicity and 2 M_S 1 0
@ Total number of symmetries 1 (point group: C1 )
@ Reference state symmetry 1 (irrep name : A )
This is a DFT calculation of type: B3LYP
Weighted mixed functional:
HF exchange: 0.20000
VWN: 0.19000
LYP: 0.81000
Becke: 0.72000
Slater: 0.80000
Orbital specifications
======================
@ Abelian symmetry species All | 1
@ | A
--- | ---
@ Occupied SCF orbitals 32 | 32
@ Secondary orbitals 104 | 104
@ Total number of orbitals 136 | 136
@ Number of basis functions 136 | 136
Optimization information
========================
@ Number of configurations 1
@ Number of orbital rotations 3328
------------------------------------------
@ Total number of variables 3329
Maximum number of Fock iterations 0
Maximum number of DIIS iterations 60
Maximum number of QC-SCF iterations 60
Threshold for SCF convergence 1.00D-05
This is a DFT calculation of type: B3LYP
Weighted mixed functional:
HF exchange: 0.20000
VWN: 0.19000
LYP: 0.81000
Becke: 0.72000
Slater: 0.80000
***********************************************
***** DIIS acceleration of SCF iterations *****
***********************************************
C1-DIIS algorithm; max error vectors = 8
Iter Total energy Error norm Delta(E) DIIS dim.
-----------------------------------------------------------------------------
1 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -8 1 F 7.95D+00 8.04D+00
K-S energy, electrons, error : -46.277710385005 63.9999955522 -4.45D-06
@ 1 -434.703963754 5.48101D+00 -4.35D+02 1
Virial theorem: -V/T = 2.012427
@ MULPOP C1 0.11; C2 0.23; C3 0.25; C4 0.23; C5 0.11; C6 0.55; H1 -0.21; H2 -0.20; H3 -0.21; H4 -0.22;
@ H5 -0.22; N 1.46; Oa -0.94; Ob -0.94;
1 Level shift: doubly occupied orbital energies shifted by -2.00D-01
-----------------------------------------------------------------------------
2 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -8 2 F 8.19D+00 8.23D+00
K-S energy, electrons, error : -47.411009578064 63.9999932058 -6.79D-06
@ 2 -434.295509108 6.87981D+00 4.08D-01 2
Virial theorem: -V/T = 1.993579
@ MULPOP C1 -0.25; C2 -0.26; C3 -0.21; C4 -0.26; C5 -0.25; C6 -0.57; H1 0.29; H2 0.28; H3 0.29; H4 0.31;
@ H5 0.31; N -1.45; Oa 0.88; Ob 0.88;
2 Level shift: doubly occupied orbital energies shifted by -2.00D-01
-----------------------------------------------------------------------------
3 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -8 3 F 8.03D+00 8.04D+00
K-S energy, electrons, error : -47.346989362885 63.9999948128 -5.19D-06
@ 3 -436.411656058 1.09230D+00 -2.12D+00 3
Virial theorem: -V/T = 2.000269
@ MULPOP C1 -0.28; C2 -0.28; C3 -0.26; C4 -0.28; C5 -0.28; C6 0.29; H1 0.25; H2 0.26; H3 0.25; H4 0.26;
@ H5 0.26; N 0.33; Oa -0.27; Ob -0.27;
3 Level shift: doubly occupied orbital energies shifted by -5.00D-02
-----------------------------------------------------------------------------
4 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -9 4 F 8.22D+00 8.24D+00
K-S energy, electrons, error : -46.995559792335 63.9999972788 -2.72D-06
@ 4 -436.480997410 5.97002D-01 -6.93D-02 4
Virial theorem: -V/T = 2.007038
@ MULPOP C1 -0.10; C2 -0.05; C3 0.00; C4 -0.05; C5 -0.10; C6 0.14; H1 0.10; H2 0.09; H3 0.10; H4 0.14;
@ H5 0.14; N 0.29; Oa -0.35; Ob -0.35;
4 Level shift: doubly occupied orbital energies shifted by -5.00D-02
-----------------------------------------------------------------------------
5 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -9 5 F 8.23D+00 8.25D+00
K-S energy, electrons, error : -47.049497958024 63.9999968009 -3.20D-06
@ 5 -436.502826984 1.47839D-01 -2.18D-02 5
Virial theorem: -V/T = 2.006265
@ MULPOP C1 -0.13; C2 -0.15; C3 -0.13; C4 -0.15; C5 -0.13; C6 0.27; H1 0.15; H2 0.15; H3 0.15; H4 0.17;
@ H5 0.17; N 0.40; Oa -0.38; Ob -0.38;
5 Level shift: doubly occupied orbital energies shifted by -1.25D-02
-----------------------------------------------------------------------------
6 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -10 6 F 8.30D+00 8.34D+00
K-S energy, electrons, error : -47.079009902748 63.9999967688 -3.23D-06
@ 6 -436.504038154 4.88798D-02 -1.21D-03 6
Virial theorem: -V/T = 2.005650
@ MULPOP C1 -0.16; C2 -0.13; C3 -0.09; C4 -0.13; C5 -0.16; C6 0.24; H1 0.15; H2 0.14; H3 0.15; H4 0.18;
@ H5 0.18; N 0.39; Oa -0.38; Ob -0.38;
-----------------------------------------------------------------------------
7 Screening settings (-IFTHRS, JTDIIS, DIFDEN, times) -10 7 F 8.28D+00 8.31D+00
K-S energy, electrons, error : -47.075655712988 63.9999968052 -3.19D-06
@ 7 -436.504158678 1.99810D-02 -1.21D-04 7
Virial theorem: -V/T = 2.005718
@ MULPOP C1 -0.14; C2 -0.14; C3 -0.11; C4 -0.14; C5 -0.14; C6 0.25; H1 0.15; H2 0.15; H3 0.15; H4 0.18;
@ H5 0.18; N 0.38; Oa -0.38; Ob -0.38;
-----------------------------------------------------------------------------