forked from IntelLabs/coach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclipped_ppo_agent.py
335 lines (274 loc) · 16.2 KB
/
clipped_ppo_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from collections import OrderedDict
from random import shuffle
from typing import Union
import numpy as np
from rl_coach.agents.actor_critic_agent import ActorCriticAgent
from rl_coach.agents.policy_optimization_agent import PolicyGradientRescaler
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import PPOHeadParameters, VHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, \
AgentParameters
from rl_coach.core_types import EnvironmentSteps, Batch, EnvResponse, StateType
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.exploration_policies.categorical import CategoricalParameters
from rl_coach.logger import screen
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
from rl_coach.schedules import ConstantSchedule
from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace
class ClippedPPONetworkParameters(NetworkParameters):
def __init__(self):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters(activation_function='tanh')}
self.middleware_parameters = FCMiddlewareParameters(activation_function='tanh')
self.heads_parameters = [VHeadParameters(), PPOHeadParameters()]
self.batch_size = 64
self.optimizer_type = 'Adam'
self.clip_gradients = None
self.use_separate_networks_per_head = True
self.async_training = False
self.l2_regularization = 0
# The target network is used in order to freeze the old policy, while making updates to the new one
# in train_network()
self.create_target_network = True
self.shared_optimizer = True
self.scale_down_gradients_by_number_of_workers_for_sync_training = True
class ClippedPPOAlgorithmParameters(AlgorithmParameters):
"""
:param policy_gradient_rescaler: (PolicyGradientRescaler)
This represents how the critic will be used to update the actor. The critic value function is typically used
to rescale the gradients calculated by the actor. There are several ways for doing this, such as using the
advantage of the action, or the generalized advantage estimation (GAE) value.
:param gae_lambda: (float)
The :math:`\lambda` value is used within the GAE function in order to weight different bootstrap length
estimations. Typical values are in the range 0.9-1, and define an exponential decay over the different
n-step estimations.
:param clip_likelihood_ratio_using_epsilon: (float)
If not None, the likelihood ratio between the current and new policy in the PPO loss function will be
clipped to the range [1-clip_likelihood_ratio_using_epsilon, 1+clip_likelihood_ratio_using_epsilon].
This is typically used in the Clipped PPO version of PPO, and should be set to None in regular PPO
implementations.
:param value_targets_mix_fraction: (float)
The targets for the value network are an exponential weighted moving average which uses this mix fraction to
define how much of the new targets will be taken into account when calculating the loss.
This value should be set to the range (0,1], where 1 means that only the new targets will be taken into account.
:param estimate_state_value_using_gae: (bool)
If set to True, the state value will be estimated using the GAE technique.
:param use_kl_regularization: (bool)
If set to True, the loss function will be regularized using the KL diveregence between the current and new
policy, to bound the change of the policy during the network update.
:param beta_entropy: (float)
An entropy regulaization term can be added to the loss function in order to control exploration. This term
is weighted using the :math:`\beta` value defined by beta_entropy.
:param optimization_epochs: (int)
For each training phase, the collected dataset will be used for multiple epochs, which are defined by the
optimization_epochs value.
:param optimization_epochs: (Schedule)
Can be used to define a schedule over the clipping of the likelihood ratio.
"""
def __init__(self):
super().__init__()
self.num_episodes_in_experience_replay = 1000000
self.policy_gradient_rescaler = PolicyGradientRescaler.GAE
self.gae_lambda = 0.95
self.use_kl_regularization = False
self.clip_likelihood_ratio_using_epsilon = 0.2
self.estimate_state_value_using_gae = True
self.beta_entropy = 0.01 # should be 0 for mujoco
self.num_consecutive_playing_steps = EnvironmentSteps(2048)
self.optimization_epochs = 10
self.normalization_stats = None
self.clipping_decay_schedule = ConstantSchedule(1)
self.act_for_full_episodes = True
class ClippedPPOAgentParameters(AgentParameters):
def __init__(self):
super().__init__(algorithm=ClippedPPOAlgorithmParameters(),
exploration={DiscreteActionSpace: CategoricalParameters(),
BoxActionSpace: AdditiveNoiseParameters()},
memory=EpisodicExperienceReplayParameters(),
networks={"main": ClippedPPONetworkParameters()})
@property
def path(self):
return 'rl_coach.agents.clipped_ppo_agent:ClippedPPOAgent'
# Clipped Proximal Policy Optimization - https://arxiv.org/abs/1707.06347
class ClippedPPOAgent(ActorCriticAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
# signals definition
self.value_loss = self.register_signal('Value Loss')
self.policy_loss = self.register_signal('Policy Loss')
self.total_kl_divergence_during_training_process = 0.0
self.unclipped_grads = self.register_signal('Grads (unclipped)')
self.value_targets = self.register_signal('Value Targets')
self.kl_divergence = self.register_signal('KL Divergence')
self.likelihood_ratio = self.register_signal('Likelihood Ratio')
self.clipped_likelihood_ratio = self.register_signal('Clipped Likelihood Ratio')
def set_session(self, sess):
super().set_session(sess)
if self.ap.algorithm.normalization_stats is not None:
self.ap.algorithm.normalization_stats.set_session(sess)
def fill_advantages(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
current_state_values = self.networks['main'].online_network.predict(batch.states(network_keys))[0]
current_state_values = current_state_values.squeeze()
self.state_values.add_sample(current_state_values)
# calculate advantages
advantages = []
value_targets = []
total_returns = batch.n_step_discounted_rewards()
if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE:
advantages = total_returns - current_state_values
elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE:
# get bootstraps
episode_start_idx = 0
advantages = np.array([])
value_targets = np.array([])
for idx, game_over in enumerate(batch.game_overs()):
if game_over:
# get advantages for the rollout
value_bootstrapping = np.zeros((1,))
rollout_state_values = np.append(current_state_values[episode_start_idx:idx+1], value_bootstrapping)
rollout_advantages, gae_based_value_targets = \
self.get_general_advantage_estimation_values(batch.rewards()[episode_start_idx:idx+1],
rollout_state_values)
episode_start_idx = idx + 1
advantages = np.append(advantages, rollout_advantages)
value_targets = np.append(value_targets, gae_based_value_targets)
else:
screen.warning("WARNING: The requested policy gradient rescaler is not available")
# standardize
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
for transition, advantage, value_target in zip(batch.transitions, advantages, value_targets):
transition.info['advantage'] = advantage
transition.info['gae_based_value_target'] = value_target
self.action_advantages.add_sample(advantages)
def train_network(self, batch, epochs):
batch_results = []
for j in range(epochs):
batch.shuffle()
batch_results = {
'total_loss': [],
'losses': [],
'unclipped_grads': [],
'kl_divergence': [],
'entropy': []
}
fetches = [self.networks['main'].online_network.output_heads[1].kl_divergence,
self.networks['main'].online_network.output_heads[1].entropy,
self.networks['main'].online_network.output_heads[1].likelihood_ratio,
self.networks['main'].online_network.output_heads[1].clipped_likelihood_ratio]
for i in range(int(batch.size / self.ap.network_wrappers['main'].batch_size)):
start = i * self.ap.network_wrappers['main'].batch_size
end = (i + 1) * self.ap.network_wrappers['main'].batch_size
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
actions = batch.actions()[start:end]
gae_based_value_targets = batch.info('gae_based_value_target')[start:end]
if not isinstance(self.spaces.action, DiscreteActionSpace) and len(actions.shape) == 1:
actions = np.expand_dims(actions, -1)
# get old policy probabilities and distribution
# TODO-perf - the target network ("old_policy") is not changing. this can be calculated once for all epochs.
# the shuffling being done, should only be performed on the indices.
result = self.networks['main'].target_network.predict({k: v[start:end] for k, v in batch.states(network_keys).items()})
old_policy_distribution = result[1:]
total_returns = batch.n_step_discounted_rewards(expand_dims=True)
# calculate gradients and apply on both the local policy network and on the global policy network
if self.ap.algorithm.estimate_state_value_using_gae:
value_targets = np.expand_dims(gae_based_value_targets, -1)
else:
value_targets = total_returns[start:end]
inputs = copy.copy({k: v[start:end] for k, v in batch.states(network_keys).items()})
inputs['output_1_0'] = actions
# The old_policy_distribution needs to be represented as a list, because in the event of
# discrete controls, it has just a mean. otherwise, it has both a mean and standard deviation
for input_index, input in enumerate(old_policy_distribution):
inputs['output_1_{}'.format(input_index + 1)] = input
# update the clipping decay schedule value
inputs['output_1_{}'.format(len(old_policy_distribution)+1)] = \
self.ap.algorithm.clipping_decay_schedule.current_value
total_loss, losses, unclipped_grads, fetch_result = \
self.networks['main'].train_and_sync_networks(
inputs, [value_targets, batch.info('advantage')[start:end]], additional_fetches=fetches
)
batch_results['total_loss'].append(total_loss)
batch_results['losses'].append(losses)
batch_results['unclipped_grads'].append(unclipped_grads)
batch_results['kl_divergence'].append(fetch_result[0])
batch_results['entropy'].append(fetch_result[1])
self.unclipped_grads.add_sample(unclipped_grads)
self.value_targets.add_sample(value_targets)
self.likelihood_ratio.add_sample(fetch_result[2])
self.clipped_likelihood_ratio.add_sample(fetch_result[3])
for key in batch_results.keys():
batch_results[key] = np.mean(batch_results[key], 0)
self.value_loss.add_sample(batch_results['losses'][0])
self.policy_loss.add_sample(batch_results['losses'][1])
self.loss.add_sample(batch_results['total_loss'])
if self.ap.network_wrappers['main'].learning_rate_decay_rate != 0:
curr_learning_rate = self.networks['main'].online_network.get_variable_value(
self.networks['main'].online_network.adaptive_learning_rate_scheme)
self.curr_learning_rate.add_sample(curr_learning_rate)
else:
curr_learning_rate = self.ap.network_wrappers['main'].learning_rate
# log training parameters
screen.log_dict(
OrderedDict([
("Surrogate loss", batch_results['losses'][1]),
("KL divergence", batch_results['kl_divergence']),
("Entropy", batch_results['entropy']),
("training epoch", j),
("learning_rate", curr_learning_rate)
]),
prefix="Policy training"
)
self.total_kl_divergence_during_training_process = batch_results['kl_divergence']
self.entropy.add_sample(batch_results['entropy'])
self.kl_divergence.add_sample(batch_results['kl_divergence'])
return batch_results['losses']
def post_training_commands(self):
# clean memory
self.call_memory('clean')
def train(self):
if self._should_train():
for network in self.networks.values():
network.set_is_training(True)
dataset = self.memory.transitions
dataset = self.pre_network_filter.filter(dataset, deep_copy=False)
batch = Batch(dataset)
for training_step in range(self.ap.algorithm.num_consecutive_training_steps):
self.networks['main'].sync()
self.fill_advantages(batch)
# take only the requested number of steps
if isinstance(self.ap.algorithm.num_consecutive_playing_steps, EnvironmentSteps):
dataset = dataset[:self.ap.algorithm.num_consecutive_playing_steps.num_steps]
shuffle(dataset)
batch = Batch(dataset)
self.train_network(batch, self.ap.algorithm.optimization_epochs)
for network in self.networks.values():
network.set_is_training(False)
self.post_training_commands()
self.training_iteration += 1
# should be done in order to update the data that has been accumulated * while not playing *
self.update_log()
return None
def run_pre_network_filter_for_inference(self, state: StateType, update_internal_state: bool=False):
dummy_env_response = EnvResponse(next_state=state, reward=0, game_over=False)
return self.pre_network_filter.filter(dummy_env_response, update_internal_state=False)[0].next_state
def choose_action(self, curr_state):
self.ap.algorithm.clipping_decay_schedule.step()
return super().choose_action(curr_state)