forked from IntelLabs/coach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddqn_agent.py
69 lines (55 loc) · 2.97 KB
/
ddqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import numpy as np
from rl_coach.agents.dqn_agent import DQNAgentParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.core_types import EnvironmentSteps
from rl_coach.schedules import LinearSchedule
class DDQNAgentParameters(DQNAgentParameters):
def __init__(self):
super().__init__()
self.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(30000)
self.exploration.epsilon_schedule = LinearSchedule(1, 0.01, 1000000)
self.exploration.evaluation_epsilon = 0.001
@property
def path(self):
return 'rl_coach.agents.ddqn_agent:DDQNAgent'
# Double DQN - https://arxiv.org/abs/1509.06461
class DDQNAgent(ValueOptimizationAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
selected_actions = np.argmax(self.networks['main'].online_network.predict(batch.next_states(network_keys)), 1)
q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
(self.networks['main'].target_network, batch.next_states(network_keys)),
(self.networks['main'].online_network, batch.states(network_keys))
])
# initialize with the current prediction so that we will
# only update the action that we have actually done in this transition
TD_errors = []
for i in range(self.ap.network_wrappers['main'].batch_size):
new_target = batch.rewards()[i] + \
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * q_st_plus_1[i][selected_actions[i]]
TD_errors.append(np.abs(new_target - TD_targets[i, batch.actions()[i]]))
TD_targets[i, batch.actions()[i]] = new_target
# update errors in prioritized replay buffer
importance_weights = self.update_transition_priorities_and_get_weights(TD_errors, batch)
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets,
importance_weights=importance_weights)
total_loss, losses, unclipped_grads = result[:3]
return total_loss, losses, unclipped_grads