Skip to content

Latest commit

 

History

History
57 lines (40 loc) · 1.33 KB

workflow_usage_and_configuration.md

File metadata and controls

57 lines (40 loc) · 1.33 KB

Workflow Usage

  1. Update usages of mlflow.projects.run to leverage the new backend plugin.

Paramater Changes

When using mlflow.projects.run ensure to set the below parameters:

  • backend = adsp
  • env_manager = local

Example

import mlflow
import uuid
 
with mlflow.start_run(run_name=f"training-{str(uuid.uuid4())}", nested=True) as run:  
   project_run = mlflow.projects.run(
      uri = ".",
      entry_point = "workflow_step_entry_point",
      run_id = run.info.run_id,
      env_manager = "local",
      backend = "adsp",
      parameters = {
         "training_data": training_data
      },
      experiment_id = run.info.experiment_id,
      synchronous = True,
      backend_config = {
         "resource_profile": "default"
      }
   )

Configuration Options

This plugin supports the MLFlow standard for backend_config.

The below options are supported:

  1. Resource Profile Specification

    • resource_profile: str

    This can be used to define a resource profile to run the worker on.

    Example Anaconda Data Science Platform Backend Configuration

    {
      "resource_profile": "large"
    }