- Update usages of
mlflow.projects.run
to leverage the new backend plugin.
- MLFlow documentation for this command is located within mlflow.projects.run Documentation.
Paramater Changes
When using mlflow.projects.run
ensure to set the below parameters:
backend
=adsp
env_manager
=local
Example
import mlflow
import uuid
with mlflow.start_run(run_name=f"training-{str(uuid.uuid4())}", nested=True) as run:
project_run = mlflow.projects.run(
uri = ".",
entry_point = "workflow_step_entry_point",
run_id = run.info.run_id,
env_manager = "local",
backend = "adsp",
parameters = {
"training_data": training_data
},
experiment_id = run.info.experiment_id,
synchronous = True,
backend_config = {
"resource_profile": "default"
}
)
This plugin supports the MLFlow standard for backend_config
.
The below options are supported:
-
Resource Profile Specification
- resource_profile: str
This can be used to define a resource profile to run the worker on.
Example Anaconda Data Science Platform Backend Configuration
{ "resource_profile": "large" }