-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathdata_manipulation.py
executable file
·332 lines (288 loc) · 9.99 KB
/
data_manipulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import numpy as np
import numpy.random as npr
import tensorflow as tf
import time
import math
import matplotlib.pyplot as plt
import copy
def get_indices(which_agent):
x_index = -7
y_index = -7
z_index = -7
yaw_index = -7
joint1_index = -7
joint2_index = -7
frontleg_index = -7
frontshin_index = -7
frontfoot_index = -7
xvel_index = -7
orientation_index = -7
if(which_agent==0): #pointmass
x_index= 0
y_index= 1
elif(which_agent==1): #ant
x_index= 29
y_index= 30
z_index = 31
xvel_index = 38
elif(which_agent==2): #swimmer
x_index= 10
y_index= 11
yaw_index = 2
joint1_index = 3
joint2_index = 4
xvel_index = 13
elif(which_agent==3): #reacher
x_index= 6
y_index= 7
elif(which_agent==4): #cheetah
x_index= 18
y_index= 20
frontleg_index = 6
frontshin_index = 7
frontfoot_index = 8
xvel_index = 21
elif(which_agent==5): #roach (not mujoco)
x_index= 0
y_index= 1
elif(which_agent==6): #hopper
x_index = 11
y_index = 13
z_index = 0
xvel_index = 14
orientation_index = 1
elif(which_agent==7): #walker
x_index = 18
y_index = 20
return x_index, y_index, z_index, yaw_index, joint1_index, joint2_index, frontleg_index, \
frontshin_index, frontfoot_index, xvel_index, orientation_index
def generate_training_data_inputs(states0, controls0):
# init vars
states=np.copy(states0)
controls=np.copy(controls0)
new_states=[]
new_controls=[]
# remove the last entry in each rollout (because that entry doesn't have an associated "output")
for i in range(len(states)):
curr_item = states[i]
length = curr_item.shape[0]
new_states.append(curr_item[0:length-1,:])
curr_item = controls[i]
length = curr_item.shape[0]
new_controls.append(curr_item[0:length-1,:])
#turn the list of rollouts into just one large array of data
dataX= np.concatenate(new_states, axis=0)
dataY= np.concatenate(new_controls, axis=0)
return dataX, dataY
def generate_training_data_outputs(states, which_agent):
#for each rollout, the output corresponding to each (s_i) is (s_i+1 - s_i)
differences=[]
for states_in_single_rollout in states:
output = states_in_single_rollout[1:states_in_single_rollout.shape[0],:] \
-states_in_single_rollout[0:states_in_single_rollout.shape[0]-1,:]
differences.append(output)
output = np.concatenate(differences, axis=0)
return output
def from_observation_to_usablestate(states, which_agent, just_one):
#######################################
######### POINTMASS ###################
#######################################
#0: x
#1: y
#2: vx
#3: vy
if(which_agent==0):
return states
#######################################
######### ANT #########################
#######################################
#we use the following observation as input to NN (41 things)
#0 to 14... 15 joint positions
#15 to 28... 14 joint velocities
#29 to 31... 3 body com pos
#32 to 37... 6 cos and sin of 3 body angles (from 9 rotation mat)
#38 to 40... body com vel
#returned by env.step
#0 to 14 = positions
#j0 x position
#j1 y position
#j2 z position
#3 ?
#4 5 body flip
#6 body rotate
#7 leg yaw ccw, 8 leg bend down
#9, 10
#11, 12
#13,14
#15 to 28 = velocities
#29 to 37 = rotation matrix (9)
#38 to 40 = com positions
#41 to 43 = com velocities
if(which_agent==1):
if(just_one):
curr_item = np.copy(states)
joint_pos = curr_item[0:15]
joint_vel = curr_item[15:29]
body_pos = curr_item[38:41]
body_rpy = to_euler(curr_item[29:38], just_one) #9 vals of rot mat --> 6 vals (cos sin of rpy)
body_vel = curr_item[41:44]
full_item = np.concatenate((joint_pos, joint_vel, body_pos, body_rpy, body_vel), axis=0)
return full_item
else:
new_states=[]
for i in range(len(states)): #for each rollout
curr_item = np.copy(states[i])
joint_pos = curr_item[:,0:15]
joint_vel = curr_item[:,15:29]
body_pos = curr_item[:,38:41]
body_rpy = to_euler(curr_item[:,29:38], just_one) #9 vals of rot mat --> 6 vals (cos sin of rpy)
body_vel = curr_item[:,41:44]
full_item = np.concatenate((joint_pos, joint_vel, body_pos, body_rpy, body_vel), axis=1)
new_states.append(full_item)
return new_states
#######################################
######### SWIMMER #####################
#######################################
#total = 16
#0 slider x... 1 slider y.... 2 heading
#3,4 the two hinge joint pos
#5,6 slider x/y vel
#7 heading vel
#8,9 the two hinge joint vel
#10,11,12 cm x and y and z pos
#13,14,15 cm x and y and z vel
if(which_agent==2):
return states
#######################################
######### REACHER #####################
#######################################
#total = 11
# 2-- cos(theta) of the 2 angles
# 2-- sin(theta) of the 2 angles
# 2-- goal pos -------------------(ignore this)
# 2-- vel of the 2 angles
# 3-- fingertip cm
if(which_agent==3):
if(just_one):
curr_item = np.copy(states)
keep_1 = curr_item[0:4]
keep_2 = curr_item[6:11]
full_item = np.concatenate((keep_1, keep_2), axis=0)
return full_item
else:
new_states=[]
for i in range(len(states)): #for each rollout
curr_item = np.copy(states[i])
keep1 = curr_item[:,0:4]
keep2 = curr_item[:,6:11]
full_item = np.concatenate((keep1, keep2), axis=1)
new_states.append(full_item)
return new_states
#######################################
######### HALF CHEETAH ################
#######################################
#STATE when you pass in something to reset env: (33)
# rootx, rootz, rooty
# bthigh, bshin, bfoot
# fthigh, fshin, ffoot
# rootx, rootz, rooty --vel
# bthigh, bshin, bfoot --vel
# fthigh, fshin, ffoot --vel
# self.model.data.qacc (9)
# self.model.data.ctrl (6)
#OBSERVATION: (24)
# 0: rootx (forward/backward)
# 1: rootz (up/down)
# 2: rooty (angle of body)
# 3: bthigh (+ is move back)
# 4: bshin
# 5: bfoot
# 6: fthigh
# 7: fshin
# 8: ffoot
# 9: root x vel
# 10: root z vel
# 11: root y vel
# 12: bthigh vel
# 13: bshin vel
# 14: bfoot vel
# 15: fthigh vel
# 16: fshin vel
# 17: ffoot vel
#com x
#com y
#com z
#com vx
#com vy
#com vz
if(which_agent==4):
return states
#######################################
######### ROACH (personal env) ########
#######################################
# x,y,z com position
# orientation com
# cos of 2 motor positions
# sin of 2 motor positions
# com velocity
# orientation angular vel
# 2 motor vel
elif(which_agent==5):
if(just_one):
curr_item = np.copy(states)
keep_1 = curr_item[0:6]
two = np.cos(curr_item[6:8])
three = np.sin(curr_item[6:8])
keep_4 = curr_item[8:16]
full_item = np.concatenate((keep_1, two, three, keep_4), axis=0)
return full_item
else:
new_states=[]
for i in range(len(states)): #for each rollout
curr_item = np.copy(states[i])
keep1 = curr_item[:,0:6]
two = np.cos(curr_item[:,6:8])
three = np.sin(curr_item[:,6:8])
keep4 = curr_item[:,8:16]
full_item = np.concatenate((keep1, two, three, keep4), axis=1)
new_states.append(full_item)
return new_states
#######################################
######### HOPPER ######################
#######################################
#observation: 17 things
#5 joints-- j0 (height), j2, j3, j4, j5
#6 velocities
#3 com pos
#3 com vel
#state: 21 things
#6 joint pos
#6 joint vel
#6 qacc
#3 ctrl
if(which_agent==6):
return states
#######################################
######### WALKER ######################
#######################################
#observation: 24 things
#9 joint pos
#9 velocities
#3 com pos
#3 com vel
if(which_agent==7):
return states
def to_euler(rot_mat, just_one):
if(just_one):
r=np.arctan2(rot_mat[3], rot_mat[1])
p=np.arctan2(-rot_mat[6], np.sqrt(rot_mat[7]*rot_mat[7]+rot_mat[8]*rot_mat[8]))
y=np.arctan2(rot_mat[7], rot_mat[8])
return np.array([np.cos(r), np.sin(r), np.cos(p), np.sin(p), np.cos(y), np.sin(y)])
else:
r=np.arctan2(rot_mat[:,3], rot_mat[:,1])
r=np.concatenate((np.expand_dims(np.cos(r), axis=1), np.expand_dims(np.sin(r), axis=1)), axis=1)
p=np.arctan2(-rot_mat[:,6], np.sqrt(rot_mat[:,7]*rot_mat[:,7]+rot_mat[:,8]*rot_mat[:,8]))
p=np.concatenate((np.expand_dims(np.cos(p), axis=1), np.expand_dims(np.sin(p), axis=1)), axis=1)
y=np.arctan2(rot_mat[:,7], rot_mat[:,8])
y=np.concatenate((np.expand_dims(np.cos(y), axis=1), np.expand_dims(np.sin(y), axis=1)), axis=1)
return np.concatenate((r,p,y), axis=1)