-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_validation.py
101 lines (87 loc) · 3.5 KB
/
cross_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 20 23:31:51 2016
@author: Deekshith
"""
import file_reader
import os
def compare_results(folder_path):
cv_test = folder_path+"cv_test/"
cv_truth = folder_path+"cv_truth/";
all_text_files = []
all_text_files += file_reader.list_all_text_files(cv_test);
compare_truth_test = folder_path+"compare_truth_test/"
file_reader.create_folder(compare_truth_test)
correct_prediction = 0;
incorrect_prediction = 0;
total_prediction = 0;
count_B = 0
count_I = 0
count_O = 0
write_handle_all_files = open(folder_path+"all_files.txt", "w")
all_files_compare_data = ""
for file in all_text_files:
new_line = ""
read_handle_truth = open(cv_truth+file, "r")
read_handle_test = open(cv_test+file, "r")
write_handle_compare = open(compare_truth_test+file, "w")
for line1, line2 in zip (read_handle_truth, read_handle_test) :
if not line1.strip():
assert (not line2.strip())
write_handle_compare.write(line1)
continue;
line1_split = line1.split()
line2_split = line2.split()
if (line1_split[2] == line2_split[2]) :
matching = ""
correct_prediction += 1;
else:
matching = "NO"
all_files_compare_data += line1_split[0].rjust(15)+line1_split[1].rjust(5)+line1_split[2].rjust(5)+line2_split[2].rjust(5)+matching.rjust(5)+"\n";
incorrect_prediction += 1
total_prediction += 1
'''
assert (len(line1_split[0]) == len(line2_split[0]) and
len(line1_split[1]) == len(line2_split[1]))
'''
if (line1_split[2] == 'O'):
count_O += 1
elif (line1_split[2] == 'B'):
count_B += 1
else:
count_I += 1
new_line += line1_split[0].rjust(15)+line1_split[1].rjust(5)+line1_split[2].rjust(5)+line2_split[2].rjust(5)+matching.rjust(5)+"\n";
write_handle_compare.write(new_line);
write_handle_compare.close();
write_handle_all_files.write(all_files_compare_data)
write_handle_all_files.close()
#print("\nIncorrect prediction =",incorrect_prediction)
#print("Correct prediction =",correct_prediction)
#print("Total prediction =",total_prediction)
#print("Incorrect prediction ratio", incorrect_prediction/total_prediction)
#print("\nCount of B =",count_B)
#print("Count of I = ",count_I)
#print("Count of O =",count_O)
def generate_cross_validation_set(folder_path) :
all_text_files = [];
all_text_files += file_reader.list_all_text_files(folder_path+"train_BIO");
dev_test_len = int(len(all_text_files) * 80/100);
#
# Assumigng 80% is dev test and 20% is cross validation set.
#
cv_truth = folder_path+"cv_truth/";
cv_test = folder_path+"cv_test/"
file_reader.create_folder(cv_truth)
file_reader.create_folder(cv_test)
while dev_test_len < len(all_text_files) :
file = all_text_files[dev_test_len]
write_handle_1 = open(cv_truth+file, "w")
write_handle_2 = open(cv_test+file, "w")
read_handle = open(folder_path+"train_BIO/"+file, "r")
line = read_handle.read();
write_handle_1.write(line)
write_handle_2.write(line)
write_handle_1.close();
write_handle_2.close();
os.remove(folder_path+"train_BIO/"+file)
dev_test_len += 1