-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmoothing.py
126 lines (112 loc) · 4.24 KB
/
smoothing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 21 14:31:09 2016
@author: Deekshith
"""
import nltk
def interpolate_get_freq(freq_of_freq, non_zero_arr, index):
value = 0;
index = int(index)
if(non_zero_arr[index] != index ):
value = freq_of_freq[non_zero_arr[index]]/(non_zero_arr[index]-index+1);
else:
value = freq_of_freq[index];
return value;
def add_uknown_word_corpus(word_list) :
word_list.append('<unk>')
return word_list;
#
''' TODO : Anant, please look at the interpolation code, i have added a hack! '''
#
# Move this to a new file once we have this working!!
# add a column for unknown/unseen words for B I O
#
def good_turing_smoothing(em, word_list) :
word_list_dict = dict()
word_list_dict = nltk.FreqDist(word_list)
#
''' Find out the max_freq value '''
#
max_freq = len(word_list_dict.keys()) * 3;
freq_of_freq = [];
i = 0;
while i <= max_freq :
freq_of_freq.append(0); #Instead try with arrays.
i += 1;
counts_table = em["counts_table"]
total_counts = em["total_occ_counts"]
max_freq = -1;
#
# For each unique word in the corpus
# for each tag in [B, I, O]
# check if we have a column entry for the chosen word for the chosen key
# if column is not found, then it is a unknown/unseen word, account that
# bigram as bigram apperaring with the frequency of zero.
# else if we find the entry in the column, update freq_of_freq table
# Keep track of bigram with maximum frequency, do not consider bigrams appearing 0 times.
#
for key in word_list_dict:
for tag in ['B', 'I', 'O']:
try :
frequency = int(counts_table[tag][key])
except :
frequency = 0;
try :
freq_of_freq[frequency] += 1;
except:
# not good for us, have to tune 40000 value above
print("Out of bound! ",frequency, key, tag)
if freq_of_freq[frequency] > max_freq and frequency != 0:
max_freq = freq_of_freq[frequency]
''' GOOD TRUING SMOOTHING (EDIT COMMENTS HERE ) '''
#
# C* = (c+1)*Nc+1/Nc (what if Nc is zero)
#
# Applicable only for frequencies whihc are less than k(=5 for now)
# We are going to do smothing only for bigrams.
# in case of unigram N0 and N1 will be zero!
#
non_zero_index_arr = [];
freq_of_freq_index = 0;
next_non_zero_index = 0;
for v in freq_of_freq:
if(v != 0):
next_non_zero_index = freq_of_freq_index;
elif(next_non_zero_index < freq_of_freq_index):
next_non_zero_index = freq_of_freq_index;
while(freq_of_freq[next_non_zero_index] == 0):
next_non_zero_index += 1;
''' HACK '''
if (next_non_zero_index >= 7000):
break;
non_zero_index_arr.append(next_non_zero_index);
freq_of_freq_index += 1;
k = 5; ##### parameter to be tuned with dev set
for key in word_list_dict:
for tag in ['B', 'I', 'O']:
try :
c = counts_table[tag][key]
except :
c = 0
if (c < k):
new_c = ((c+1)*
(interpolate_get_freq(freq_of_freq, non_zero_index_arr,c+1)/
interpolate_get_freq(freq_of_freq, non_zero_index_arr, c)));
#
# Tag vs word table already had a column for word for the chosen tag
# Replace the current value c with new value c*
#
if key in counts_table[tag]:
counts_table[tag][key] += new_c
counts_table[tag][key] -= c
total_counts[tag] += new_c
total_counts[tag] -= c
#print("value changed from",c,"to ",new_c)
else:
#
# unseen word,tag combination in corpus
#
assert(c == 0)
counts_table[tag]['<zero>'] = new_c
total_counts[tag] += new_c
return {"counts_table": counts_table, "total_occ_counts": total_counts}