-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_analysis.R
84 lines (54 loc) · 3.5 KB
/
run_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
## 1. Merge the training and the test sets to create one data set ##
##Reading files##
features = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/features.txt',header=FALSE)
activityType = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/activity_labels.txt',header=FALSE)
subject_Train = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/train/subject_train.txt',header=FALSE)
x_Train = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/train/X_train.txt',header=FALSE)
y_Train = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/train/y_train.txt',header=FALSE)
subject_Test = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/test/subject_test.txt',header=FALSE)
x_Test = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/test/X_test.txt',header=FALSE)
y_Test = read.table('D:/Coursera/Getting and Cleaning Data/UCI HAR Dataset/test/y_test.txt',header=FALSE)
## Assigning column names ##
colnames(activityType) = c('activityId','activityType')
colnames(subject_Train) = "subjectId"
colnames(x_Train) = features[,2]
colnames(y_Train) = "activityId"
colnames(subject_Test) = "subjectId"
colnames(x_Test) = features[,2]
colnames(y_Test) = "activityId"
## Creating mergeddatasets##
training_data = cbind(x_Train, y_Train,subject_Train)
test_Data = cbind(x_Test, y_Test, subject_Test)
## Combine training and test data to create a final data set ##
merged_data = rbind(training_data,test_Data)
## Creating vector for column names for merged_data ##
colNames = colnames(merged_data)
## 2. Extract only the measurements on the mean and standard deviation for each measurement. ##
logicalVector = (grepl("activity..",colNames) | grepl("subject..",colNames) | grepl("-mean..",colNames) & !grepl("-meanFreq..",colNames) & !grepl("mean..-",colNames) | grepl("-std..",colNames) & !grepl("-std()..-",colNames))
merged_data = merged_data[logicalVector==TRUE]
## 3. Use descriptive activity names to name the activities in the data set ##
merged_data = merge(merged_data,activityType,by='activityId',all.x=TRUE)
colNames = colnames(merged_data)
## 4. Appropriately label the data set with descriptive activity names. ##
for (i in 1:length(colNames))
{
colNames[i] = gsub("\\()","",colNames[i])
colNames[i] = gsub("-std$","StdDev",colNames[i])
colNames[i] = gsub("-mean","Mean",colNames[i])
colNames[i] = gsub("^(t)","time",colNames[i])
colNames[i] = gsub("^(f)","freq",colNames[i])
colNames[i] = gsub("([Gg]ravity)","Gravity",colNames[i])
colNames[i] = gsub("([Bb]ody[Bb]ody|[Bb]ody)","Body",colNames[i])
colNames[i] = gsub("[Gg]yro","Gyro",colNames[i])
colNames[i] = gsub("AccMag","AccMagnitude",colNames[i])
colNames[i] = gsub("([Bb]odyaccjerkmag)","BodyAccJerkMagnitude",colNames[i])
colNames[i] = gsub("JerkMag","JerkMagnitude",colNames[i])
colNames[i] = gsub("GyroMag","GyroMagnitude",colNames[i])
};
colnames(merged_data) = colNames
## 5. Create a second, independent tidy data set with the average of each variable for each activity and each subject. ##
predata = merged_data[,names(merged_data) != 'activityType']
tidy_Data = aggregate(predata[,names(predata) != c('activityId','subjectId')],by=list(activityId=predata$activityId,subjectId = predata$subjectId),mean)
tidy_Data = merge(tidy_Data,activityType,by='activityId',all.x=TRUE)
write.table(tidy_Data, 'D:/Coursera/Getting and Cleaning Data/tidy_Data.txt',row.names=TRUE,sep='\t')
View(tidy_Data)