forked from leonaascimento/antibot
-
Notifications
You must be signed in to change notification settings - Fork 3
/
benchmark.py
126 lines (106 loc) · 4.11 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from datasets.generator import AntibotDataset
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV, StratifiedKFold, cross_validate
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC, SVC
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import pandas as pd
def load_antibot():
cols = [
'collected_items',
'avg_time_to_collect_item',
'delta_time_to_collect_item',
'heal_threshold',
'avg_time_to_start_healing',
'delta_time_to_start_healing',
'killed_enemies',
'hungry_time',
'class'
]
ds = pd.read_csv('antibot.data', sep=',',
header=None, names=cols, dtype=float)
X = ds.iloc[:, :-1]
y = ds.iloc[:, -1]
return ('antibot', X, y)
AntibotDataset(1000, 0.2, 255).generate().export_csv("antibot.data")
datasets = []
datasets.append(load_antibot())
decisiontreeclassifier_params = {
'decisiontreeclassifier__criterion': ['gini', 'entropy'],
'decisiontreeclassifier__splitter': ['best', 'random'],
'decisiontreeclassifier__min_samples_split': [2, 4, 6, 8, 10],
'decisiontreeclassifier__min_samples_leaf': [1, 3, 5, 7, 9],
}
kneighborsclassifier_params = {
'kneighborsclassifier__n_neighbors': [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21],
'kneighborsclassifier__weights': ['uniform', 'distance'],
'kneighborsclassifier__algorithm': ['auto', 'brute', 'kd_tree', 'ball_tree'],
}
linearsvc_params = {
'linearsvc__C': np.linspace(0.5, 5., 10),
}
svc_linear_params = {
'svc__kernel': ['linear'],
'svc__C': np.linspace(0.5, 5., 10),
}
svc_poly_params = {
'svc__kernel': ['poly'],
'svc__C': np.linspace(0.5, 5., 10),
'svc__degree': range(0, 10),
'svc__gamma': ['scale'],
}
svc_rbf_params = {
'svc__kernel': ['rbf'],
'svc__C': np.linspace(0.5, 5., 10),
'svc__gamma': ['scale'],
}
pipes = []
pipes.append(('DecisionTreeClassifier', decisiontreeclassifier_params,
make_pipeline(MinMaxScaler(), DecisionTreeClassifier())))
pipes.append(('KNeighborsClassifier', kneighborsclassifier_params,
make_pipeline(MinMaxScaler(), KNeighborsClassifier())))
pipes.append(('LinearSVC', linearsvc_params,
make_pipeline(MinMaxScaler(), LinearSVC())))
pipes.append(('SVC_linear', svc_linear_params,
make_pipeline(MinMaxScaler(), SVC())))
pipes.append(('SVC_poly', svc_poly_params,
make_pipeline(MinMaxScaler(), SVC())))
pipes.append(('SVC_rbf', svc_rbf_params,
make_pipeline(MinMaxScaler(), SVC())))
data = {}
bestparams = []
for ds_name, X, y in datasets:
# Separação da base entre treino e teste com 10 pastas
skf = StratifiedKFold(10)
skf.split(X, y)
for clf_name, params, pipe in pipes:
best_attempt = GridSearchCV(pipe, params, cv=skf).fit(X, y)
best_params = best_attempt.best_params_
bestparams.append(best_params)
pipe.set_params(**best_params)
scoring = {
'accuracy': 'accuracy',
'precision': 'precision',
'f1': 'f1',
'recall': 'recall',
'roc_auc': 'roc_auc'
}
scores = cross_validate(
pipe, X, y, cv=skf, scoring=scoring, return_train_score=False)
print(clf_name)
print(" accuracy: %.3f +/- %.3f" %
(scores['test_accuracy'].mean(), scores['test_accuracy'].std()))
print(" precision: %.3f +/- %.3f" %
(scores['test_precision'].mean(), scores['test_precision'].std()))
print(" f1: %.3f +/- %.3f" %
(scores['test_f1'].mean(), scores['test_f1'].std()))
print(" recall: %.3f +/- %.3f" %
(scores['test_recall'].mean(), scores['test_recall'].std()))
print(" roc_auc: %.3f +/- %.3f" %
(scores['test_roc_auc'].mean(), scores['test_roc_auc'].std()))
print()
data.setdefault(clf_name, {})[ds_name] = scores
np.savetxt("best_params", bestparams, fmt='%s', delimiter=",")