-
Notifications
You must be signed in to change notification settings - Fork 28
/
palm_adjacency.m
93 lines (83 loc) · 2.98 KB
/
palm_adjacency.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
function adj = palm_adjacency(fac,isvtx)
% Compute an adjacency matrix for vertexwise or facewise data.
%
% Usage:
% adj = palm_adjacency(fac,isvtx)
%
% - fac : Face indices (see palm_srfread.m for details).
% - isvtx : Boolean indicating if the adjacency is for vertexwise
% or facewise data.
% - adj : Sparse adjacency matrix.
%
% _____________________________________
% Anderson M. Winkler
% FMRIB / Univ. of Oxford
% Jul/2015
% http://brainder.org
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% PALM -- Permutation Analysis of Linear Models
% Copyright (C) 2015 Anderson M. Winkler
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Make sure the face indices aren't stored as int,
% otherwise sparse won't work.
fac = double(fac);
% Number of vertices and faces
nV = max(fac(:));
nF = size(fac,1);
if isvtx,
% For vertexwise data:
% Two vertices are connected if they share an edge.
% Note difference compared to the previous palm_vtxlabel.m
% in which two vertices are connected if they are all in
% the same face.
adj = sparse( ...
[ ...
fac(:,1); fac(:,1); ...
fac(:,2); fac(:,2); ...
fac(:,3); fac(:,3)], ...
[ ...
fac(:,2); fac(:,3); ...
fac(:,1); fac(:,3); ...
fac(:,1); fac(:,2)],1,nV,nV);
else
% For facewise data:
% Reparameterize fac in terms of edges:
edg = [fac(:,[1 2]); fac(:,[2 3]); fac(:,[1 3])];
edg = sort(edg,2);
[edg,~,fec] = unique(edg,'rows');
nE = size(edg,1);
fec = reshape(fec,size(fac));
% Two faces are connected if they share an edge:
fidx = repmat(1:nF,[3 1])';
ef = unique([fec(:),fidx(:)],'rows');
adj = reshape(ef(:,2),[2 nE])';
adj = sparse( ...
[adj(:,1); adj(:,2)],...
[adj(:,2); adj(:,1)],1,nF,nF);
% % It's also possible to have a weaker adjacency, in which two
% % faces are connected if they share a vertex. However, this is
% % too slow to run in practice.
% fidx = repmat(1:size(fac,1),[3 1])';
% vf = unique([fac(:),fidx(:)],'rows');
% v = unique(vf(:,1));
% adj = sparse([],[],[],nF,nF,nF*13);
% for vv = 1:numel(v),
% vidx = vf(:,1) == vv;
% adj(vf(vidx,2),vf(vidx,2)) = 1;
% end
end
% Add the otherwise missing diagonal.
adj = (adj > 0) + speye(size(adj));