-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathpalm_shuffree.m
289 lines (277 loc) · 8.41 KB
/
palm_shuffree.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
function [Bset,nB,mtr] = palm_shuffree(varargin)
% A single function to generate a set of permutations and/or
% sign-flips. This function is a faster replacement to
% palm_shuftree.m when all observations are freely exchangeable,
% i.e., when there are no block restrictions and no tree needs
% to be constructed.
%
% Usage
% [Bset,nB] = palm_shuffree(M,nP0,CMC,EE,ISE,idxout)
%
% Inputs:
% - M : Design matrix.
% - nP0 : Requested number of permutations.
% - CMC : Use Conditional Monte Carlo?
% - EE : Allow permutations?
% - ISE : Allow sign-flips?
% If you supply the EE argument, you must
% also supply ISE argument. If one is omited,
% the other needs to be omited too.
% Default is true for EE, and false for ISE.
% - idxout : (Optional) If true, the output isn't a cell
% array with permutation matrices, but an array
% with permutation indices.
%
% Outputs:
% - Bset : Set of permutations and/or sign flips.
% - nB : Number of permutations and/or sign-flips.
% - mtr : Some metrics. See palm_metrics.m for details.
%
% _____________________________________
% Anderson M. Winkler
% FMRIB / University of Oxford
% Jan/2014
% http://brainder.org
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% PALM -- Permutation Analysis of Linear Models
% Copyright (C) 2015 Anderson M. Winkler
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Accept arguments
if nargin < 2 || nargin > 6 || nargin == 4,
error('Incorrect number of arguments');
end
M = varargin{1};
nP0 = varargin{2};
if nargin > 2,
CMC = varargin{3};
else
CMC = false;
end
if nargin > 4,
EE = varargin{4};
ISE = varargin{5};
else
EE = true;
ISE = false;
end
if nargin > 5,
idxout = varargin{6};
else
idxout = false;
end
if ~EE && ~ISE,
error('EE and/or ISE must be enabled, otherwise there is nothing to shuffle.')
end
% Sequence of unique values to shuffle
N = size(M,1);
[~,~,seq] = unique(M,'rows');
seqS = sortrows(horzcat(seq,(1:N)'));
U = unique(seq);
nU = numel(U);
% Logs, to help later
lfac = palm_factorial(N);
% Number of unique permutations & sign flips
maxP = 1;
maxS = 1;
lmaxP = 0;
lmaxS = 0;
if EE,
nrep = zeros(size(U));
for u = 1:nU,
nrep(u) = sum(seqS(:,1) == U(u));
end
lmaxP = lfac(N+1) - sum(lfac(nrep+1));
maxP = round(exp(lmaxP));
if nU == N,
if isinf(maxP),
fprintf('Number of possible permutations is exp(%g) = %d!.\n',lmaxP,N);
else
fprintf('Number of possible permutations is %g = %d!.\n',maxP,N);
end
else
if isinf(maxP),
fprintf('Number of possible permutations is exp(%g).\n',lmaxP);
else
fprintf('Number of possible permutations is %g.\n',maxP);
end
end
end
if ISE,
lmaxS = N * log(2);
maxS = 2^N;
if isinf(maxS),
fprintf('Number of possible sign-flips is exp(%g) = 2^%d.\n',lmaxS,N);
else
fprintf('Number of possible sign-flips is %g = 2^%d.\n',maxS,N);
end
end
maxB = maxP * maxS;
lmaxB = lmaxP + lmaxS;
% String for the screen output below
if EE && ~ISE,
whatshuf = 'permutations only';
stype = 'perms';
elseif ISE && ~EE,
whatshuf = 'sign-flips only';
stype = 'flips';
elseif EE && ISE,
whatshuf = 'permutations and sign-flips';
stype = 'both';
end
% This ensures that there is at least 1 permutation (no permutation)
% and 1 sign-flipping (no sign-flipping). These are modified below as
% needed.
Pset = seqS(:,2);
Sset = ones(N,1);
% Generate the Pset and Sset
if nP0 == 0 || nP0 >= maxB,
% Run exhaustively if the user requests more permutations than possible.
% Note that here CMC is irrelevant.
fprintf('Generating %g shufflings (%s).\n',maxB,whatshuf);
if EE,
Pset = horzcat(Pset,zeros(N,maxP-1));
for p = 2:maxP,
seqS = palm_nextperm(seqS);
Pset(:,p) = seqS(:,2);
end
end
if ISE,
if N <= 52,
Sset = palm_d2b(0:maxS-1,N)';
Sset(~~Sset) = -1;
Sset( ~Sset) = 1;
Sset = flipud(Sset);
else
Sset = false(N,maxS);
for s = 2:maxS,
Sset(:,s) = palm_incrbin(Sset(:,s-1));
end
end
end
elseif nP0 < maxB,
% Or use a subset of possible permutations. The nested conditions
% are to avoid repetitions, and to compensate fewer flips with more
% perms or vice versa as needed in the tight situations
fprintf('Generating %g shufflings (%s).\n',nP0,whatshuf);
if EE,
if nP0 >= maxP,
Pset = horzcat(Pset,zeros(N,maxP-1));
for p = 2:maxP,
seqS = palm_nextperm(seqS);
Pset(:,p) = seqS(:,2);
end
else
Pset = horzcat(Pset,zeros(N,nP0-1));
if CMC,
for p = 1:nP0,
Pset(:,p) = randperm(N)';
end
else
Pseq = zeros(size(Pset));
Pseq(:,1) = seqS(:,2);
for p = 2:nP0,
whiletest = true;
while whiletest,
Pset(:,p) = randperm(N)';
Pseq(:,p) = seqS(Pset(:,p));
whiletest = any(all(bsxfun(@eq,Pseq(:,p),Pseq(:,1:p-1))));
end
end
end
end
end
if ISE,
if nP0 >= maxS,
Sset = palm_d2b(0:maxS-1,N)';
Sset(~~Sset) = -1;
Sset( ~Sset) = 1;
else
if CMC,
Sset = double(rand(N,nP0) > .5);
Sset(:,1) = 0;
Sset(~~Sset) = -1;
Sset( ~Sset) = 1;
else
Sset = zeros(N,nP0);
for p = 2:nP0,
whiletest = true;
while whiletest,
Sset(:,p) = rand(N,1) > .5;
whiletest = any(all(bsxfun(@eq,Sset(:,p),Sset(:,1:p-1))));
end
end
Sset(~~Sset) = -1;
Sset( ~Sset) = 1;
end
end
end
end
% Generate the set of shufflings, mixing permutations and
% sign-flippings as needed.
nP = size(Pset,2);
nS = size(Sset,2);
if nS == 1,
% If only 1 sign-flip is possible, ignore it.
Bset = Pset;
elseif nP == 1,
% If only 1 permutation is possible, ignore it.
Bset = bsxfun(@times,Pset,Sset);
elseif nP0 == 0 || nP0 >= maxB,
% If the user requested too many shufflings, do all
% those that are possible.
Bset = zeros(N,maxB);
b = 1;
for p = 1:size(Pset,2),
for s = 1:size(Sset,2),
Bset(:,b) = Pset(:,p) .* Sset(:,s);
b = b + 1;
end
end
else
% The typical case, with an enormous number of possible
% shufflings, and the user choses a moderate number
Bset = zeros(N,nP0);
% 1st shuffling is no shuffling, regardless
Bset(:,1) = (1:N)';
if CMC,
% If CMC, no need to take care of repetitions.
for b = 2:nP0,
Bset(:,b) = Pset(:,randi(nP)) .* Sset(:,randi(nS));
end
else
% Otherwise, avoid them
[~,bidx] = sort(rand(nP*nS,1));
bidx = bidx(1:nP0);
[pidx,sidx] = ind2sub([nP nS],bidx);
for b = 2:nP0,
Bset(:,b) = Pset(:,pidx(b)) .* Sset(:,sidx(b));
end
end
end
nB = size(Bset,2);
% Sort back to the original order
Bset = sortrows(Bset);
% Compute some metrics
if nargout == 3,
mtr = zeros(9,1);
mtr(1:2) = lmaxB;
mtr(4) = 2^nU - 1;
[mtr(5),mtr(6),mtr(7),mtr(8),mtr(9)] = palm_metrics(Bset,seq,stype);
end
% If the desired outputs are permutation matrices instead of indices
if ~ idxout,
Bset = palm_swapfmt(Bset);
end