-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathfacile.py
executable file
·517 lines (435 loc) · 20.6 KB
/
facile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#!/usr/bin/env python3
import argparse
import importlib
import math
import sys
from collections import namedtuple
from itertools import count, cycle
from typing import List
from instructions import *
from microArchConfigs import MicroArchConfig, MicroArchConfigs
from utils import *
from x64_lib import *
def computePortUsageLimit(instructions, instrInstancesForInstr={}):
portUsage = {}
for instr in instructions:
if instr.macroFusedWithPrevInstr:
continue
for ports, nUops in instr.portData.items():
if instr.mayBeEliminated:
instrIList = instrInstancesForInstr.get(instr, [])
if instrIList:
nUops = sum((not uop.eliminated) for instrI in instrIList for lamUop in instrI.uops for uop in lamUop.getUnfusedUops())/len(instrIList)
else:
continue
portUsage[frozenset(ports)] = portUsage.get(frozenset(ports), 0) + nUops
TP = 0
for pc in set(pc|pc2 for pc in portUsage for pc2 in portUsage):
uops = sum(u for pc2, u in portUsage.items() if pc2.issubset(pc))
TP = max(TP, uops/len(pc))
return TP
def computeIssueLimit(instructions: List['Instr'], uArchConfig: 'MicroArchConfig'):
return sum(i.retireSlots for i in instructions if not i.macroFusedWithPrevInstr)/uArchConfig.issueWidth
def hasLCP(instrD):
return (instrD['prefix66'] != '0') and (instrD.get('IMM_WIDTH', 0) == 16)
def computePredecLimit(disas, loop=False, alignmentOffset=0):
codeLength = sum(len(d['opcode']) for d in disas) // 2
unroll = 1 if loop else (16 // math.gcd(codeLength, 16))
nB16Blocks = int(math.ceil((unroll * codeLength) / 16))
L = [0 for _ in range(0, nB16Blocks)] # number of instr. instances whose last byte is in the given block
O = [0 for _ in range(0, nB16Blocks)] # number of instr. instances whose nominal opcode starts in the given block but whose last byte is in the next block
LCP = [0 for _ in range(0, nB16Blocks)] # number of instr. instances whose nominal opcode starts in the given block, and which have a length-changing prefix
alignmentOffset = alignmentOffset % 16
curAddr = (-16 + alignmentOffset) if alignmentOffset else 0
for d in cycle(disas):
if curAddr >= unroll * codeLength:
break
nextAddr = curAddr + (len(d['opcode']) // 2)
endBlock = (nextAddr-1) // 16 # 16-Byte block in which the last Byte of the instruction is stored
posNominalOpcode = d['pos_nominal_opcode']
nominalOpcodeBlock = (curAddr + posNominalOpcode) // 16
curAddr = nextAddr
if 0 <= endBlock < nB16Blocks:
L[endBlock] += 1
if 0 <= nominalOpcodeBlock < nB16Blocks:
if nominalOpcodeBlock != endBlock:
O[nominalOpcodeBlock] += 1
if hasLCP(d):
LCP[nominalOpcodeBlock] += 1
cycles = 0
for bi in range(0, nB16Blocks):
cycles += math.ceil((L[bi]+O[bi])/5)
cycles += max(0, 3 * LCP[bi] - (math.ceil((L[bi-1]+O[bi-1])/5) - 1))
return cycles / unroll
def computePredecLimitSimple(hex, instructions):
codeLength = len(hex) // 2
return codeLength/16
def computeDecLimit(instructions, uArchConfig):
instructions = [i for i in instructions if not i.macroFusedWithPrevInstr]
firstInstrOnDecInRound = {}
nAvailSimpleDec = 0
curDec = uArchConfig.nDecoders - 1
nComplexDecInRound = {}
for round in count(0):
nComplexDecInRound[round] = 0
for ii, instr in enumerate(instructions):
if instr.complexDecoder:
curDec = 0
nAvailSimpleDec = instr.nAvailableSimpleDecoders
else:
if ((nAvailSimpleDec == 0)
or (curDec+1 == uArchConfig.nDecoders-1 and instr.macroFusibleWith and (not uArchConfig.macroFusibleInstrCanBeDecodedAsLastInstr))):
curDec = 0
nAvailSimpleDec = uArchConfig.nDecoders - 1
else:
curDec += 1
nAvailSimpleDec -= 1
if instr.isBranchInstr or instr.macroFusedWithNextInstr:
nAvailSimpleDec = 0
if curDec == 0:
nComplexDecInRound[round] += 1
if ii == 0:
if curDec in firstInstrOnDecInRound:
firstRound = firstInstrOnDecInRound[curDec]
return sum(nComplexDecInRound[r] for r in range(firstRound, round)) / (round - firstRound)
else:
firstInstrOnDecInRound[curDec] = round
def computeDecLimitSimple(instructions):
instructions = [i for i in instructions if not i.macroFusedWithPrevInstr]
return max(len(instructions)/4, len([i for i in instructions if i.complexDecoder]))
def computeLSDLimit(instructions, uArchConfig):
nUops = sum(i.uopsMITE + i.uopsMS for i in instructions if not i.macroFusedWithPrevInstr)
LSDUnrollCount = uArchConfig.LSDUnrolling.get(nUops, 1)
return math.ceil((nUops * LSDUnrollCount) / uArchConfig.issueWidth) / LSDUnrollCount
def computeDSBLimit(instructions, alignmentOffset=0):
nUops = sum(i.uopsMITE for i in instructions if not i.macroFusedWithPrevInstr)
codeLength = sum(len(i.opcode) // 2 for i in instructions[:-1])
if (codeLength + alignmentOffset) // 32 == alignmentOffset // 32:
return math.ceil(nUops/6)
else:
return nUops/6
LatGraphEdge = namedtuple('LatencyGraphEdge', ['source', 'target', 'cost', 'time'])
def generateLatencyGraph(instructions: List[Instr], uArchConfig: MicroArchConfig, initPolicy):
moves = [instr for instr in instructions if instr.mayBeEliminated]
prevWriteForMove = {}
prevNonEliminatedWriteForMove = {}
outputOfMoveRenamedBy32BitMove = {}
prevWriteToReg = {}
for instr in instructions * 2:
if instr.mayBeEliminated:
prevWriteForMove[instr] = prevWriteToReg.get(getCanonicalReg(instr.inputRegOperands[0].reg))
for outOp in instr.outputRegOperands:
prevWriteToReg[getCanonicalReg(outOp.reg)] = instr
for move in moves:
movesOnPath = set()
curInstr = move
while (curInstr is not None) and (curInstr not in movesOnPath):
if curInstr.mayBeEliminated and (getRegSize(curInstr.outputRegOperands[0].reg) == 32):
outputOfMoveRenamedBy32BitMove[move] = True
if not curInstr.mayBeEliminated:
prevNonEliminatedWriteForMove[move] = curInstr
break
movesOnPath.add(curInstr)
curInstr = prevWriteForMove[curInstr]
prevWriteToKey = dict() # key -> (instr, outOp, fastPtrChasing, iteration)
absValGen = AbstractValueGenerator(initPolicy)
def getOpKey(op):
if isinstance(op, RegOperand):
return getCanonicalReg(op.reg)
elif isinstance(op, FlagOperand):
return op.flags
elif isinstance(op, MemOperand):
memAddr = op.memAddr
return (absValGen.getAbstractValueForReg(memAddr.get('base')), absValGen.getAbstractValueForReg(memAddr.get('index')),
memAddr.get('scale'), memAddr.get('disp'))
else:
return None
RSPImplicitlyChanged = False
def processInstrOutputs(instr: Instr, iteration):
fastPtrChasing = False
if uArchConfig.fastPointerChasing and instr.inputMemOperands:
baseReg = instr.inputMemOperands[0].memAddr.get('base')
baseInstr = ((prevNonEliminatedWriteForMove.get(prevWriteToKey[baseReg][0]) if prevWriteToKey[baseReg][0].mayBeEliminated else prevWriteToKey[baseReg][0])
if baseReg in prevWriteToKey else None)
baseRenamedBy32BitMove = (baseReg in prevWriteToKey) and outputOfMoveRenamedBy32BitMove.get(prevWriteToKey[baseReg][0])
indexReg = instr.inputMemOperands[0].memAddr.get('index')
indexInstr = ((prevNonEliminatedWriteForMove.get(prevWriteToKey[indexReg][0]) if prevWriteToKey[indexReg][0].mayBeEliminated else prevWriteToKey[indexReg][0])
if indexReg in prevWriteToKey else None)
fastPtrChasing = latReducedDueToFastPtrChasing(uArchConfig, instr.inputMemOperands[0].memAddr, baseInstr, indexInstr, baseRenamedBy32BitMove)
nonlocal RSPImplicitlyChanged
if instr.implicitRSPChange:
RSPImplicitlyChanged = True
elif any((getCanonicalReg(op.reg) == 'RSP') for op in instr.inputRegOperands+instr.memAddrOperands+instr.outputRegOperands):
RSPImplicitlyChanged = False
for outOp in instr.outputRegOperands + instr.outputFlagOperands + instr.outputMemOperands:
prevWriteToKey[getOpKey(outOp)] = (instr, outOp, fastPtrChasing, iteration)
if isinstance(outOp, RegOperand):
absValGen.setAbstractValueForCurInstr(getOpKey(outOp), instr)
absValGen.finishCurInstr()
for instr in instructions * 2:
processInstrOutputs(instr, 0)
nodesForInstr = {}
edgesForNode = {}
for instr in instructions:
nodesForInstr[instr] = []
for op in instr.inputRegOperands + instr.memAddrOperands + instr.inputFlagOperands + instr.inputMemOperands:
nodesForInstr[instr].append(op)
if getOpKey(op) in prevWriteToKey:
prevInstr, prevOutOp, fastPtrChasing, prevIt = prevWriteToKey[getOpKey(op)]
for prevInOp in prevInstr.inputRegOperands + prevInstr.memAddrOperands + prevInstr.inputFlagOperands + prevInstr.inputMemOperands:
if prevInstr.mayBeEliminated:
lat = 0
elif (not isinstance(prevInOp, MemOperand)) and isinstance(op, MemOperand):
lat = 0 # ToDo
elif prevInstr.latencies.get((prevInOp, prevOutOp), 0) > 0:
lat = prevInstr.latencies[(prevInOp, prevOutOp)]
if fastPtrChasing and (prevInOp in prevInstr.memAddrOperands) and prevInstr.inputMemOperands:
lat -= 1
elif (RSPImplicitlyChanged and (prevInOp in instr.inputRegOperands+instr.memAddrOperands)
and (getCanonicalReg(prevInOp.reg) == 'RSP') and (not prevInOp.isImplicitStackOperand)):
lat += 1
else:
continue
edge = LatGraphEdge(prevInOp, op, lat, (0 if prevIt else 1))
edgesForNode.setdefault(prevInOp, []).append(edge)
processInstrOutputs(instr, 1)
return (nodesForInstr, edgesForNode)
def computeMaximumLatencyForGraph(instructions: List[Instr], nodesForInstr, edgesForNode):
# based on https://stackoverflow.com/a/62006383/10461973
def findStronglyConnectedComponents(nodesForInstr, edgesForNode):
indexDict = {}
lowlinkDict = {}
onStackSet = set()
S = []
components = []
for nodeList in nodesForInstr.values():
for n in nodeList:
if n not in indexDict:
callStack = [(n, 0)]
while (callStack):
v, pi = callStack.pop()
if pi == 0:
index = len(indexDict)
lowlinkDict[v] = index
indexDict[v] = index
S.append(v)
onStackSet.add(v)
else:
prev = edgesForNode[v][pi-1].target
lowlinkDict[v] = min(lowlinkDict[v], lowlinkDict[prev])
while pi < len(edgesForNode.get(v, [])) and (edgesForNode[v][pi].target in indexDict):
w = edgesForNode[v][pi].target
if w in onStackSet:
lowlinkDict[v] = min(lowlinkDict[v], indexDict[w])
pi += 1
if pi < len(edgesForNode.get(v, [])):
w = edgesForNode[v][pi].target
callStack.append((v, pi+1))
callStack.append((w, 0))
continue
if lowlinkDict[v] == indexDict[v]:
comp = []
while True:
w = S.pop()
onStackSet.remove(w)
comp.append(w)
if v == w:
break
components.append(comp)
return components
# based on the "VAL" algorithm described in https://doi.org/10.1145/1027084.1027085
def maximumCycleRatio(nodes, edges, r=sys.maxsize, eps=0.01):
def findRatio(nodes, r, p):
visited = {v: None for v in nodes}
handle = None
for v in nodes:
if visited[v] is not None:
continue
u = v
while True:
visited[u] = v
u = p[u].target
if visited[u] is not None:
break
if visited[u] != v:
continue
x = u
sum = 0
len = 0
while True:
sum = sum - p[u].cost
len = len + p[u].time
u = p[u].target
if x == u:
break
if r > sum/len:
r = sum/len
handle = u
return (r, handle)
d = {v: sys.maxsize for v in nodes}
p = {v: None for v in nodes}
for e in edges:
if -e.cost < d[e.source]:
d[e.source] = -e.cost
p[e.source] = e
edgesOnMaxCycle = []
while True:
r, handle = findRatio(nodes, r, p)
if handle:
edgesOnMaxCycle = []
u = handle
while True:
edgesOnMaxCycle.append(p[u])
u = p[u][1]
if u == handle:
break
changed = False
for e in edges:
if d[e.source] > d[e.target] - e.cost - r*e.time + eps:
d[e.source] = d[e.target] - e.cost - r*e.time
p[e.source] = e
changed = True
if not changed:
return (-r, edgesOnMaxCycle)
components = findStronglyConnectedComponents(nodesForInstr, edgesForNode)
maxCycleRatio = 0
edgesOnMaxCycle = []
for comp in components:
edgesForComp = [e for n in comp for e in edgesForNode.get(n, []) if e.target in comp]
if edgesForComp:
curMaxCycleRatio, curEdgesOnMaxCycle = maximumCycleRatio(comp, edgesForComp)
if curMaxCycleRatio > maxCycleRatio:
maxCycleRatio = curMaxCycleRatio
edgesOnMaxCycle = curEdgesOnMaxCycle
return (maxCycleRatio, edgesOnMaxCycle, components)
def generateGraphvizOutputForLatencyGraph(instructions: List[Instr], nodesForInstr, edgesForNode, edgesOnMaxCycle, stronglyConnectedComponents, filename):
import pydot
graph = pydot.Dot("g", graph_type="digraph", bgcolor="white")
for i, instr in enumerate(instructions):
cluster = pydot.Cluster(str(id(instr)), label=str(i) + ': ' + instr.asm)
graph.add_subgraph(cluster)
prevNodeId = None
for node in nodesForInstr[instr]:
label = ''
shape = ''
fillcolor = 'aqua'
color = 'black'
penwidth = 1
if isinstance(node, RegOperand):
label = node.reg
if node in instr.memAddrOperands:
shape = 'hexagon'
fillcolor = 'darkolivegreen1'
else:
shape = 'oval'
fillcolor = 'darkslategray1'
elif isinstance(node, MemOperand):
label = 'Mem'
shape = 'rect'
fillcolor = 'darksalmon'
elif isinstance(node, FlagOperand):
label = node.flags
shape = 'octagon'
fillcolor = 'gold'
if any(node == e.source for e in edgesOnMaxCycle):
color = 'red'
penwidth = 3
cluster.add_node(pydot.Node(str(id(node)), label=label, shape=shape, color=color, fillcolor=fillcolor, penwidth=penwidth, style='filled'))
if prevNodeId:
graph.add_edge(pydot.Edge(prevNodeId, str(id(node)), style='invis'))
prevNodeId = str(id(node))
for nodeList in nodesForInstr.values():
for node in nodeList:
for e in edgesForNode.get(node, []):
color = 'lightgray'
penwidth = 1
if e in edgesOnMaxCycle:
color = 'red'
penwidth = 3
elif any(e.source in comp and e.target in comp for comp in stronglyConnectedComponents):
color = 'blue'
graph.add_edge(pydot.Edge(str(id(e.source)), str(id(e.target)), xlabel=e.cost, constraint=False, color=color, fontcolor=color,
style=('dashed' if e.time else ''), headport='w', tailport='e', penwidth=penwidth))
graph.write(filename, format=(filename.split('.')[-1] if ('.' in filename) else 'dot'), prog='dot')
def getAnalyticalPredictionForUnrolling(instructions: List[Instr], hex, xedDisas, uArchConfig: MicroArchConfig, components: List[str]):
TPs = []
if 'predec' in components:
TPs.append(('predec', computePredecLimit(xedDisas)))
if 'predecSimple' in components:
TPs.append(('predec', computePredecLimitSimple(hex, instructions)))
if 'dec' in components:
TPs.append(('dec', computeDecLimit(instructions, uArchConfig)))
if 'decSimple' in components:
TPs.append(('decSimple', computeDecLimitSimple(instructions)))
if 'issue' in components:
TPs.append(('issue', computeIssueLimit(instructions, uArchConfig)))
if 'portUsage' in components:
TPs.append(('portUsage', computePortUsageLimit(instructions)))
if 'lat' in components:
nodesForInstr, edgesForNode = generateLatencyGraph(instructions, uArchConfig, 'stack')
lat = computeMaximumLatencyForGraph(instructions, nodesForInstr, edgesForNode)[0]
TPs.append(('lat', lat))
return TPs
def getAnalyticalPredictionForLoop(instructions: List[Instr], hex, xedDisas, uArchConfig: MicroArchConfig, components: List[str]):
nonMacroFusedInstructions = [instr for instr in instructions if not instr.macroFusedWithPrevInstr]
if nonMacroFusedInstructions[-1].cannotBeInDSBDueToJCCErratum:
uopSource = 'MITE'
elif uArchConfig.LSDEnabled and sum(instr.uopsMITE for instr in nonMacroFusedInstructions) <= uArchConfig.IDQWidth:
uopSource = 'LSD'
else:
uopSource = 'DSB'
TPs = []
if 'dsb' in components:
TPs.append(('dsb', computeDSBLimit(instructions) if (uopSource == 'DSB') else 0))
if 'lsd' in components:
TPs.append(('lsd', computeLSDLimit(instructions, uArchConfig) if (uopSource == 'LSD') else 0))
if 'predec' in components:
TPs.append(('predec', computePredecLimit(xedDisas, loop=1) if (uopSource == 'MITE') else 0))
if 'predecSimple' in components:
TPs.append(('predec', computePredecLimitSimple(hex, instructions) if (uopSource == 'MITE') else 0))
if 'dec' in components:
TPs.append(('dec', computeDecLimit(instructions, uArchConfig) if (uopSource == 'MITE') else 0))
if 'decSimple' in components:
TPs.append(('decSimple', computeDecLimitSimple(instructions) if (uopSource == 'MITE') else 0))
if 'issue' in components:
TPs.append(('issue', computeIssueLimit(instructions, uArchConfig)))
if 'lat' in components:
nodesForInstr, edgesForNode = generateLatencyGraph(instructions, uArchConfig, 'stack')
lat = computeMaximumLatencyForGraph(instructions, nodesForInstr, edgesForNode)[0]
TPs.append(('lat', lat))
if 'portUsage' in components:
TPs.append(('portUsage', computePortUsageLimit(instructions)))
return TPs
def main():
parser = argparse.ArgumentParser(description='AvgError')
parser.add_argument('-hex', type=str, help='Hex code of a basic block')
parser.add_argument('-file', type=str, help='File with hex codes (one per line)')
parser.add_argument('-mode', choices=['loop', 'unroll'], required=True)
parser.add_argument('-arch', help='Microarchitecture', default='SKL')
parser.add_argument('-analyticalComponents', default='predec,dec,dsb,lsd,issue,portUsage,lat')
args = parser.parse_args()
if (args.hex is not None) and (args.file is not None):
print('-hex and -file are not supported at the same time')
exit(1)
if (args.hex is None) and (args.file is None):
print('either -hex or -file is required')
exit(1)
if args.hex is not None:
lines = [args.hex]
else:
with open(args.file, 'r') as f:
lines = f.read().splitlines()
import xed
uArchConfig = MicroArchConfigs[args.arch]
archData = importlib.import_module('instrData.'+uArchConfig.name+'_data')
for hex in lines:
disas = xed.disasHex(hex, chip='TIGER_LAKE')
instructions = getInstructions(disas, uArchConfig, archData, 0)
if args.mode == 'unroll':
TPs = getAnalyticalPredictionForUnrolling(instructions, hex, disas, uArchConfig, args.analyticalComponents.split(','))
else:
TPs = getAnalyticalPredictionForLoop(instructions, hex, disas, uArchConfig, args.analyticalComponents.split(','))
TP = max(v for _, v in TPs)
print('{}: {:.2f}'.format(hex, TP))
if __name__ == "__main__":
main()