-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfeature_extraction_GTZAN.py
180 lines (148 loc) · 7.5 KB
/
feature_extraction_GTZAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from pandas.io import pickle
import pickle
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn import preprocessing
import plotly.express as px
from pycaret.classification import *
from sklearn.metrics.pairwise import cosine_similarity
import seaborn as sns
def main():
features_data = pd.read_csv("features_30_sec_GTZAN.csv")
# Colecteaza datele pentru aflarea k-ului potrivit
elbow_data = pd.read_csv("features_30_sec_GTZAN.csv")
elbow_data = elbow_data.drop(columns=['filename', 'length'])
print('Features Data : ', features_data)
print('Coloanele dataframe-ului initial :', features_data.columns)
# Clusterizare k-Means si standardizarea datelor in pipeline
song_cluster_pipeline = Pipeline([('scaler', StandardScaler()),
('kmeans', KMeans(n_clusters=5,
verbose=2, n_jobs=4))], verbose=True)
# Selecteaza toate coloanele mai putin 'length' (nu e caracteristica relevanta)
features_data = features_data.drop(columns=['length'])
# Selecteaza doar valorile numerice
X = features_data.select_dtypes(np.number)
print("X :", X)
# Metoda "Elbow"
sse = {}
# Trece prin valori multiple ale lui k pentru a gasi valoarea sa ideala
for k in range(1, 20):
kmeans = KMeans(n_clusters=k, init='k-means++', max_iter=100).fit(X)
elbow_data["clusters"] = kmeans.labels_
sse[k] = kmeans.inertia_
# Ploteaza graficul cu estimarea erorii (SSE) in functie de valorile lui k
plt.plot(list(sse.keys()), list(sse.values()))
plt.xlabel("k - număr de clustere")
plt.ylabel("Estimarea erorii")
# Salveaza graficul in directorul curent
plt.savefig('elbow_method_GTZAN.png')
# Toate coloanele (inainte de scalarea datelor)
# no_columns = list(X.columns)
# print('Coloanele df-ului: ', no_columns)
# Prezice clusterul (label-ul) pentru fiecare fisier audio .wav
song_cluster_pipeline.fit(X)
song_cluster_labels = song_cluster_pipeline.predict(X)
# Adauga in tabel coloana cu clusterul din care face parte fiecare piesa
features_data['cluster_label'] = song_cluster_labels
print('Song cluster labels :', song_cluster_labels)
# Adauga coloana cu numele fisierelor .wav
# names_columns = features_data['filename']
# print('Shape x', X.shape)
# Vizualizarea clusterelor cu PCA
pca_pipeline = Pipeline([('scaler', StandardScaler()), ('PCA', PCA(n_components=2))])
song_embedding = pca_pipeline.fit_transform(X)
projection = pd.DataFrame(columns=['x', 'y'], data=song_embedding)
projection['title'] = features_data['filename']
projection['tempo'] = features_data['tempo']
# Caracteristicile calculate in pachetul GTZAN
projection['chroma_stft_mean'] = features_data['chroma_stft_mean']
projection['chroma_stft_var'] = features_data['chroma_stft_var']
projection['rolloff_mean'] = features_data['rolloff_mean']
projection['rolloff_var'] = features_data['rolloff_var']
projection['rms_mean'] = features_data['rms_mean']
projection['rms_var'] = features_data['rms_var']
projection['mfcc1_mean'] = features_data['mfcc1_mean']
projection['mfcc1_var'] = features_data['mfcc1_var']
projection['mfcc2_mean'] = features_data['mfcc2_mean']
projection['mfcc2_var'] = features_data['mfcc2_var']
projection['mfcc3_mean'] = features_data['mfcc3_mean']
projection['mfcc3_var'] = features_data['mfcc3_var']
projection['mfcc4_mean'] = features_data['mfcc4_mean']
projection['mfcc4_var'] = features_data['mfcc4_var']
projection['mfcc5_mean'] = features_data['mfcc5_mean']
projection['mfcc5_var'] = features_data['mfcc5_var']
projection['spectral_bandwidth_mean'] = features_data['spectral_bandwidth_mean']
projection['spectral_bandwidth_var'] = features_data['spectral_bandwidth_var']
projection['spectral_centroid_mean'] = features_data['spectral_centroid_mean']
projection['spectral_centroid_var'] = features_data['spectral_centroid_var']
projection['zero_crossing_rate_mean'] = features_data['zero_crossing_rate_mean']
projection['zero_crossing_rate_var'] = features_data['zero_crossing_rate_var']
projection['cluster'] = features_data['cluster_label']
fig = px.scatter(
projection, x='x', y='y', color='cluster',
hover_data=['x', 'y', 'title', 'tempo', 'chroma_stft_mean', 'chroma_stft_var',
'rolloff_mean', 'rolloff_var', 'rms_mean', 'rms_var',
'mfcc1_mean', 'mfcc1_var', 'mfcc2_mean', 'mfcc2_var',
'mfcc3_mean', 'mfcc3_var', 'mfcc4_mean', 'mfcc4_var',
'mfcc5_mean', 'mfcc5_var',
'spectral_bandwidth_mean', 'spectral_bandwidth_var',
'spectral_centroid_mean', 'spectral_centroid_var',
'zero_crossing_rate_mean', 'zero_crossing_rate_var'
])
fig.show()
# Plot cu exprimarea genurilor in BPM
x = features_data[["label", "tempo"]]
print(x)
plt.subplots(figsize=(16, 9))
sns.boxplot(x="label", y="tempo", data=x)
plt.title('Clasificarea genurilor în functie de BPM', fontsize=25)
plt.xticks(fontsize=14)
plt.yticks(fontsize=10)
plt.xlabel("Gen", fontsize=15)
plt.ylabel("Bătăi pe minut (BPM)", fontsize=15)
plt.savefig('clasificare_genuri_GTZAN.png')
plt.close()
# Salveaza modelul
# filename = 'finalized_model.sav'
# pickle.dump(pca_pipeline, open(filename, 'wb'))
# Seteaza filename ca index
features_data = pd.read_csv('features_30_sec_GTZAN.csv', index_col='filename')
labels = features_data['label']
# features_data = features_data.drop(columns=['length', 'label'])
# print("X echivalentul lui data_scaled_df", X)
# Standardizarea datelor pentru metoda "cosine similarity"
data_scaled = song_cluster_pipeline.fit_transform(X)
# Noile valori scalate
print('Valori scalate pentru aplicare cosine:', data_scaled)
"""
features_data = pd.DataFrame(data_scaled, columns=number_cols)
print('Scaled data type:', type(data_scaled))
# print('Scaled dataframe', features_data)
"""
# Afiseaza numele .wav-urilor
# print('labels index', labels.index)
# Recommender - Cosine similarity
similarity = cosine_similarity(data_scaled)
# print("Similarity shape:", similarity.shape)
# Converteste in dataframe si seteaza indexul randului si al coloanei din labels
sim_df_labels = pd.DataFrame(similarity)
# print(sim_df_labels)
sim_df_names = sim_df_labels.set_index(labels.index)
sim_df_names.columns = labels.index
# print('sim_df_names', sim_df_names)
def find_similar_songs(filename):
# Afiseaza de la cel mai similar fisier
series = sim_df_names[filename].sort_values(ascending=True)
# Elimina cosine similarity == 1 (o piesa se va potrivi cu ea insasi)
series = series.drop(filename)
print("Fișiere audio similare în caracteristici cu", filename)
print(series.sample(15))
# Returneaza numele pieselor similare
find_similar_songs('classical.00019.wav')
# with open('finalized_model.sav', 'rb') as fid:
# pca_pipeline = pickle.load(fid)
if __name__ == "__main__":
main()