-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmf_strong.py
245 lines (204 loc) · 10.1 KB
/
mf_strong.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import print_function
from __future__ import division
from utils.data import load_data, show_data_splits, shape_data
from utils.evaluation import mask_array_rows, evaluate
from utils.mf import select_model, show_design, load_mf, train, fit
import implicit
import argparse
import os
os.environ["OPENBLAS_NUM_THREADS"] = "1"
import numpy as np
'''
Collaborative Filtering baseline for music playlist continuation based on the
factorization of the playlist-song matrix of co-occurrences. We use the
Weighted Matrix Factorization algorithm. Once the factorization is learned, it
is used to populate a matrix of playlist-song scores describing how well a
playlist and a song fit together. Thus, a playlist can be extended by selecting
the songs with highest score.
In this program we explore the so-called strong generalization setting. That
is, a playlists collection is used to learn collaborative song factors via
matrix factorization. Then, the obtained song factors are used to extend
unseen playlists from another playlists collection.
This approach is purely collaborative in the usual sense in the recommender
systems literature, i.e., it only relies on the collaborative information given
by the actual playlists examples. However, it is also possible to partly skip
the factorization of the playlist-song matrix and use independently
pre-computed song factors, either derived from the factorization of independent
listening logs or predicted by a pre-trained audio2cf network similar to
van den Oord et al. "Deep Content-Based Music Recommendation". (This latter
option is then a hybrid variant, in the sense that it combines collaborative
and audio information.)
To obtain appropriate playlist factors for the pre-computed song factors we
perform "half" an iteration of Alternating Least Squares given the
playlist-song matrix and the pre-computed song factors.
'''
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Collaborative music playlist continuation based on matrix factorization.')
parser.add_argument('--model', type=str, help='path to the model specification file', metavar='')
parser.add_argument('--dataset', type=str, help='path to the playlists dataset directory', metavar='')
parser.add_argument('--msd', type=str, help='path to the MSD directory', metavar='')
parser.add_argument('--train', action='store_true', help='train the matrix factorization with monitoring')
parser.add_argument('--fit', action='store_true', help='fit the matrix factorization')
parser.add_argument('--test', action='store_true', help='evaluate the playlist continuations')
parser.add_argument('--precomputed', type=str, default=None, help='name of pre-computed song factors to test, if not None', metavar='')
parser.add_argument('--song_occ', type=int, help='test on songs observed song_occ times during training', nargs='+', metavar='')
parser.add_argument('--ci', action='store_true', help='compute confidence intervals if True')
parser.add_argument('--use_gpu', action='store_true', help='use GPU if True')
parser.add_argument('--metrics_file', type=str, help='file name to save metrics', metavar='')
parser.add_argument('--seed', type=int, help='set random behavior', metavar='')
args = parser.parse_args()
# set random behavior
# (only randomness is in `implicit`, which only depends on numpy)
if args.seed is not None:
np.random.seed(args.seed)
# set model configuration
model = select_model(args.model)
# prepare output directory
data_name = os.path.basename(os.path.normpath(args.dataset))
out_dir = os.path.join('params', 'mf', model.name + '_' + data_name + '_strong')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
# load data: playlists, splits and artist info
if args.precomputed is not None:
model.feature = args.precomputed
data = load_data(args.dataset, args.msd, model)
playlists_coo, split_weak, split_strong, features, song2artist = data
# playlists_coo are the playlists stored in coordinate format
playlists_idx, songs_idx, _, idx2song = playlists_coo
# split_weak provides a query/continuation split
train_idx_cnt, test_idx_cnt = np.hstack(split_weak[:2]), split_weak[2]
cont_output_l, Y_cont_l, Y_query_l, train_occ_l = [], [], [], []
for fold in range(5):
print('\nRunning fold {}...'.format(fold))
# split_strong defines a playlist-disjoint split
# chose one of the folds
fold_strong = split_strong[fold]
train_idx_dsj, test_idx_dsj = np.hstack(fold_strong[:2]), fold_strong[2]
# define splits for this experiment
# train model on the intersection of disjoint training and queries
# validate model on the inters. of disjoint training and continuations
# fit the model on the disjoint training playlists
# extend only the playlist-disjoint test split
train_idx = np.intersect1d(train_idx_dsj, train_idx_cnt)
valid_idx = np.intersect1d(train_idx_dsj, test_idx_cnt)
fit_idx = train_idx_dsj
query_idx = np.intersect1d(test_idx_dsj, train_idx_cnt)
cont_idx = np.intersect1d(test_idx_dsj, test_idx_cnt)
# provide data information
show_data_splits(playlists_idx, songs_idx, idx2song, song2artist,
train_idx, valid_idx, fit_idx, query_idx, cont_idx)
# provide model information
print('\nMatrix Factorization:')
show_design(model)
if args.train:
#
# train the factorization while validating on withheld playlists
# for tuning purposes, one fold is enough
#
if fold > 0:
print('\nI won\'t train anymore. Just did it for one fold.')
break
# prepare song-playlist matrix in training
_, Y_train = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=train_idx
)
# prepare song-playlist matrix in validation
_, Y_valid = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=valid_idx
)
# train the model
train(
model=model,
train_target=Y_train,
valid_target=Y_valid,
out_dir=out_dir,
use_gpu=args.use_gpu
)
if args.fit:
#
# fit the matrix factorization model
#
# prepare song-playlist matrix in full training
_, Y_fit = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=fit_idx
)
# fit the model
fit(
model=model,
fit_target=Y_fit,
out_dir=out_dir,
fold=fold,
use_gpu=args.use_gpu
)
if args.test:
#
# extend the playlists in the query split and evaluate the
# continuations by comparing them to actual withheld continuations
#
# load previously learned song factors, discard playlist factors
params_file = '{}_params{}.pkl'.format(model.name, fold)
params_path = os.path.join(out_dir, params_file)
songs, _ = load_mf(params_path)
# prepare song-playlist matrix in test continuations
if args.precomputed is None:
# use `songs` factors obtained by song-playlist factorization
_, Y_cont = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=cont_idx
)
else:
# overwrite `songs` with pre-comp. factors from logs or audio2cf
songs, Y_cont = shape_data(
playlists_idx, songs_idx, idx2song=idx2song, features=features,
subset=cont_idx
)
# prepare song-playlist matrix in test queries
# used to mask songs from queries and to calculate playlist factors
_, Y_query = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=query_idx
)
# calculate number of song occurrences when MF was fit
# used to discard unknown songs and for cold-start analysis
_, Y_fit = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=fit_idx
)
train_occ = np.asarray(Y_fit.sum(axis=1)).flatten()
# compute playlist factors (missing in 'strong' generalization) with
# half iteration of ALS given song factors and "query" playlists
mf = implicit.als.AlternatingLeastSquares(
factors=model.num_factors,
regularization=model.l2_weight,
use_cg=False,
use_gpu=args.use_gpu,
iterations=1
)
mf.item_factors = songs.astype('float32')
mf.fit(item_users=model.positive_weight * Y_query, show_progress=False)
# predict song-playlist scores
print('\nPredicting song-playlist scores...')
cont_output = songs.dot(mf.user_factors.T)
if args.precomputed is None:
# mask song-playlist continuation pairs involving unknown songs
mask_array_rows(Y_cont, np.where(train_occ == 0)[0])
# append arrays re-shaping for evaluation
cont_output_l.append(cont_output.T)
Y_cont_l.append(Y_cont.T.tocsr())
Y_query_l.append(Y_query.T.tocsr())
train_occ_l.append(train_occ)
if args.test:
# evaluate the continuations
evaluate(
scores=cont_output_l,
targets=Y_cont_l,
queries=Y_query_l,
train_occ=train_occ_l,
k_list=[10, 30, 100],
ci=args.ci,
song_occ=args.song_occ,
metrics_file=args.metrics_file
)