-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpopularity_strong.py
124 lines (98 loc) · 4.79 KB
/
popularity_strong.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import print_function
from __future__ import division
from utils.data import load_data, show_data_splits, shape_data
from utils.evaluation import evaluate
import argparse
import os
import numpy as np
'''
Popularity baseline for music playlist continuation. (It is also possible to
simply compute a random baseline giving the --random option.)
In this program we explore the so-called strong generalization setting. That is,
the song popularity is computed on playlists different than those extended.
'''
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Popularity for music playlist continuation.')
parser.add_argument('--dataset', type=str, help='path to the playlists dataset directory', metavar='')
parser.add_argument('--msd', type=str, help='path to the MSD directory', metavar='')
parser.add_argument('--ci', action='store_true', help='compute confidence intervals if True')
parser.add_argument('--song_occ', type=int, help='test on songs observed song_occ times during training', nargs='+', metavar='')
parser.add_argument('--metrics_file', type=str, help='file name to save metrics', metavar='')
parser.add_argument('--random', action='store_true', help='forget about pop, evaluate a random baseline')
args = parser.parse_args()
if args.random:
# set randomness if computing random baseline
print('This is not pop but a random baseline... you sure?')
rng = np.random.RandomState(1)
# load data: playlists, splits and artist info
data_name = os.path.basename(os.path.normpath(args.dataset))
data = load_data(args.dataset, args.msd, None)
playlists_coo, split_weak, split_strong, features, song2artist = data
# playlists_coo are the playlists stored in coordinate format
playlists_idx, songs_idx, _, idx2song = playlists_coo
# split_weak provides a query/continuation split
train_idx_cnt, test_idx_cnt = np.hstack(split_weak[:2]), split_weak[2]
cont_output_l, Y_cont_l, Y_query_l, train_occ_l = [], [], [], []
for fold in range(5):
print('\nRunning fold {}...'.format(fold))
# split_strong defines a playlist-disjoint split
# chose one of the folds
fold_strong = split_strong[fold]
train_idx_dsj, test_idx_dsj = np.hstack(fold_strong[:2]), fold_strong[2]
# define splits for this experiment
# train model on the intersection of disjoint training and queries
# validate model on the inters. of disjoint training and continuations
# fit the model on the disjoint training playlists
# extend only the playlist-disjoint test split
train_idx = np.intersect1d(train_idx_dsj, train_idx_cnt)
valid_idx = np.intersect1d(train_idx_dsj, test_idx_cnt)
fit_idx = train_idx_dsj
query_idx = np.intersect1d(test_idx_dsj, train_idx_cnt)
cont_idx = np.intersect1d(test_idx_dsj, test_idx_cnt)
# provide data information
show_data_splits(playlists_idx, songs_idx, idx2song, song2artist,
train_idx, valid_idx, fit_idx, query_idx, cont_idx)
#
# extend the playlists in the query split and evaluate the
# continuations by comparing them to actual withheld continuations
#
# prepare song-playlist matrix in test continuations
_, Y_cont = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=cont_idx
)
# prepare song-playlist matrix in test queries
# used to mask songs from queries and to calculate playlist factors
_, Y_query = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=query_idx
)
# calculate number of song occurrences in "fit" playlists
# used for cold-start analysis
_, Y_fit = shape_data(
playlists_idx, songs_idx, idx2song=None, features=None,
subset=fit_idx
)
train_occ = np.asarray(Y_fit.sum(axis=1)).flatten()
# predict song-playlist scores
print('\nPredicting song-playlist scores...')
cont_output = np.repeat(train_occ.reshape(-1, 1), Y_cont.shape[1], axis=1)
if args.random:
# overwrite cont_output if we need a random baseline
cont_output = rng.rand(*Y_cont.shape)
# append arrays re-shaping for evaluation
cont_output_l.append(cont_output.T)
Y_cont_l.append(Y_cont.T.tocsr())
Y_query_l.append(Y_query.T.tocsr())
train_occ_l.append(train_occ)
# evaluate the continuations
evaluate(
scores=cont_output_l,
targets=Y_cont_l,
queries=Y_query_l,
train_occ=train_occ_l,
k_list=[10, 30, 100],
ci=args.ci,
song_occ=args.song_occ,
metrics_file=args.metrics_file
)