-
Notifications
You must be signed in to change notification settings - Fork 0
/
2.IMDB.Binary.py
executable file
·67 lines (44 loc) · 2.09 KB
/
2.IMDB.Binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from tensorflow.keras.datasets import imdb
import numpy as np
import time
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences),dimension))
for i, sequence in enumerate(sequences):
results[i,sequence] = 1.
return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
y_train = np.asarray(train_labels).astype('float16')
y_test = np.asarray(test_labels).astype('float16')
from tensorflow.keras import models, layers
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
# from keras import optimizers, losses, metrics
# model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss=losses.binary_crossentropy(),
# metrics=[metrics.binary_accuracy()])
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
start_fit = time.time()
history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))
end_fit = time.time()
# plotting the training and validation loss
import PlotLossAcc
PlotLossAcc.myplot(history)
Results = model.evaluate(x_test,y_test)
print("Data demonstrates overfitting after 3 epochs")
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train, epochs=3, batch_size=512, validation_data=(x_val, y_val))
ImprovedResults = model.evaluate(x_test, y_test)
print("Test Accuracy (NEW): ", ImprovedResults[1]*100, "%")
print("Test Accuracy (OLD): ", Results[1]*100, "%")
print("--- %s seconds ---" % (end_fit - start_fit), " fit time.")