forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
183 lines (158 loc) · 7.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import logging
import os
import sys
import torch
from model import TextSentiment
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split
from torchtext.datasets import text_classification
def generate_batch(batch):
r"""
Since the text entries have different lengths, a custom function
generate_batch() is used to generate data batches and offsets,
which are compatible with EmbeddingBag. The function is passed
to 'collate_fn' in torch.utils.data.DataLoader. The input to
'collate_fn' is a list of tensors with the size of batch_size,
and the 'collate_fn' function packs them into a mini-batch.
Pay attention here and make sure that 'collate_fn' is declared
as a top level def. This ensures that the function is available
in each worker.
Output:
text: the text entries in the data_batch are packed into a list and
concatenated as a single tensor for the input of nn.EmbeddingBag.
offsets: the offsets is a tensor of delimiters to represent the beginning
index of the individual sequence in the text tensor.
cls: a tensor saving the labels of individual text entries.
"""
label = torch.tensor([entry[0] for entry in batch])
text = [entry[1] for entry in batch]
offsets = [0] + [len(entry) for entry in text]
offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
text = torch.cat(text)
return text, offsets, label
def train_and_valid(lr_, sub_train_, sub_valid_):
r"""
We use a SGD optimizer to train the model here and the learning rate
decreases linearly with the progress of the training process.
Args:
lr_: learning rate
sub_train_: the data used to train the model
sub_valid_: the data used for validation
"""
optimizer = torch.optim.SGD(model.parameters(), lr=lr_)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=args.lr_gamma)
train_data = DataLoader(sub_train_, batch_size=batch_size, shuffle=True,
collate_fn=generate_batch, num_workers=args.num_workers)
num_lines = num_epochs * len(train_data)
for epoch in range(num_epochs):
# Train the model
for i, (text, offsets, cls) in enumerate(train_data):
optimizer.zero_grad()
text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)
output = model(text, offsets)
loss = criterion(output, cls)
loss.backward()
optimizer.step()
processed_lines = i + len(train_data) * epoch
progress = processed_lines / float(num_lines)
if processed_lines % 128 == 0:
sys.stderr.write(
"\rProgress: {:3.0f}% lr: {:3.3f} loss: {:3.3f}".format(
progress * 100, scheduler.get_lr()[0], loss))
# Adjust the learning rate
scheduler.step()
# Test the model on valid set
print("")
print("Valid - Accuracy: {}".format(test(sub_valid_)))
def test(data_):
r"""
Args:
data_: the data used to train the model
"""
data = DataLoader(data_, batch_size=batch_size, collate_fn=generate_batch)
total_accuracy = []
for text, offsets, cls in data:
text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)
with torch.no_grad():
output = model(text, offsets)
accuracy = (output.argmax(1) == cls).float().mean().item()
total_accuracy.append(accuracy)
# In case that nothing in the dataset
if total_accuracy == []:
return 0.0
return sum(total_accuracy) / len(total_accuracy)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Train a text classification model on text classification datasets.')
parser.add_argument('dataset', choices=text_classification.DATASETS)
parser.add_argument('--num-epochs', type=int, default=5,
help='num epochs (default=5)')
parser.add_argument('--embed-dim', type=int, default=32,
help='embed dim. (default=32)')
parser.add_argument('--batch-size', type=int, default=16,
help='batch size (default=16)')
parser.add_argument('--split-ratio', type=float, default=0.95,
help='train/valid split ratio (default=0.95)')
parser.add_argument('--lr', type=float, default=4.0,
help='learning rate (default=4.0)')
parser.add_argument('--lr-gamma', type=float, default=0.8,
help='gamma value for lr (default=0.8)')
parser.add_argument('--ngrams', type=int, default=2,
help='ngrams (default=2)')
parser.add_argument('--num-workers', type=int, default=1,
help='num of workers (default=1)')
parser.add_argument('--device', default='cpu',
help='device (default=cpu)')
parser.add_argument('--data', default='.data',
help='data directory (default=.data)')
parser.add_argument('--use-sp-tokenizer', type=bool, default=False,
help='use sentencepiece tokenizer (default=False)')
parser.add_argument('--sp-vocab-size', type=int, default=20000,
help='vocab size in sentencepiece model (default=20000)')
parser.add_argument('--dictionary',
help='path to save vocab')
parser.add_argument('--save-model-path',
help='path for saving model')
parser.add_argument('--logging-level', default='WARNING',
help='logging level (default=WARNING)')
args = parser.parse_args()
num_epochs = args.num_epochs
embed_dim = args.embed_dim
batch_size = args.batch_size
lr = args.lr
device = args.device
data = args.data
split_ratio = args.split_ratio
# two args for sentencepiece tokenizer
use_sp_tokenizer = args.use_sp_tokenizer
sp_vocab_size = args.sp_vocab_size
logging.basicConfig(level=getattr(logging, args.logging_level))
if not os.path.exists(data):
print("Creating directory {}".format(data))
os.mkdir(data)
if use_sp_tokenizer:
import spm_dataset
train_dataset, test_dataset = spm_dataset.setup_datasets(args.dataset,
root='.data',
vocab_size=sp_vocab_size)
model = TextSentiment(sp_vocab_size, embed_dim,
len(train_dataset.get_labels())).to(device)
else:
train_dataset, test_dataset = text_classification.DATASETS[args.dataset](
root=data, ngrams=args.ngrams)
model = TextSentiment(len(train_dataset.get_vocab()),
embed_dim, len(train_dataset.get_labels())).to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
# split train_dataset into train and valid
train_len = int(len(train_dataset) * split_ratio)
sub_train_, sub_valid_ = \
random_split(train_dataset, [train_len, len(train_dataset) - train_len])
train_and_valid(lr, sub_train_, sub_valid_)
print("Test - Accuracy: {}".format(test(test_dataset)))
if args.save_model_path:
print("Saving model to {}".format(args.save_model_path))
torch.save(model.state_dict(), args.save_model_path)
if args.dictionary is not None:
print("Save vocab to {}".format(args.dictionary))
torch.save(train_dataset.get_vocab(), args.dictionary)