-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_prediction.py
147 lines (133 loc) · 5.54 KB
/
cnn_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
import keras.metrics
from sklearn.preprocessing import normalize
from sklearn.model_selection import train_test_split
# loading data into df's and series
values = {}
gauges = np.array([])
def load_csv(station_no, file_name, data_type):
values.update({station_no: pd.read_csv(file_name,
parse_dates=True,
dtype={data_type: np.float64})})
load_csv(6048, "6048P.csv", "Precipitation")
load_csv(6053, "6053P.csv", "Precipitation")
load_csv(6077, "6077P.csv", "Precipitation")
load_csv(6079, "6079P.csv", "Precipitation")
load_csv(6100, "6100P.csv", "Precipitation")
load_csv(6108, "6108P.csv", "Precipitation")
load_csv(6121, "6121P.csv", "Precipitation")
load_csv(6125, "6125P.csv", "Precipitation")
load_csv(5024, "5024D.csv", "Discharge")
load_csv(5025, "5025D.csv", "Discharge")
load_csv(5027, "5027D.csv", "Discharge")
load_csv(5029, "5029D.csv", "Discharge")
load_csv(5030, "5030D.csv", "Discharge")
load_csv(5096, "5096D.csv", "Discharge")
def load_event(station, start_time, end_time, data_type, arr):
t1 = (values[station]["Datetime"])[(values[station]["Datetime"])
== start_time].index[0]
t2 = (values[station]["Datetime"])[(values[station]["Datetime"])
== end_time].index[0]
gauge = np.array(values[station][data_type].iloc[t1:t2])
arr = np.concatenate((arr, gauge))
return arr
# load event for all 14 gauges
start = "12/30/2005 10:15:00"
end = "01/01/2006 11:45:00"
gauges = load_event(6048, start, end, "Precipitation", gauges)
gauges = load_event(6053, start, end, "Precipitation", gauges)
gauges = load_event(6077, start, end, "Precipitation", gauges)
gauges = load_event(6079, start, end, "Precipitation", gauges)
gauges = load_event(6100, start, end, "Precipitation", gauges)
gauges = load_event(6108, start, end, "Precipitation", gauges)
gauges = load_event(6121, start, end, "Precipitation", gauges)
gauges = load_event(6125, start, end, "Precipitation", gauges)
gauges = load_event(5024, start, end, "Discharge", gauges)
gauges = load_event(5025, start, end, "Discharge", gauges)
gauges = load_event(5027, start, end, "Discharge", gauges)
gauges = load_event(5029, start, end, "Discharge", gauges)
gauges = load_event(5030, start, end, "Discharge", gauges)
gauges = load_event(5096, start, end, "Discharge", gauges)
gauges = gauges.reshape((14, 198))
# normalize data (gray-scale image)
X = normalize(gauges)
# beginning of model
model = Sequential()
model.add(Conv2D(filters=5, kernel_size=(3, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(16, activation="relu"))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse',
metrics=[keras.metrics.RootMeanSquaredError(),
keras.metrics.MeanAbsolutePercentageError()])
# turning data into [a, b, c, d], [e] where a, b, c, d are precipitation, e is
# discharge
# for i in range(len(event)):
# x = [event_rainfall[i], event_rainfall[i + 1], event_rainfall[i + 2],
# event_rainfall[i + 3], event_rainfall[i + 4], event_rainfall[i + 5],
# event_rainfall[i + 6], event_rainfall[i + 7], event_rainfall[i + 8],
# event_rainfall[i + 9], event_rainfall[i + 10],
# event_rainfall[i + 11]]
# y = event[i]
# X.append(x)
# Y.append(y)
# X = np.array(X)
# Y = np.array(Y)
# X_train, X_test, Y_train, Y_test = train_test_split(X, Y)
# basic dense layer model
# model = Sequential()
# model.add(Dense(64, activation="relu"))
# model.add(Dense(4, activation="relu"))
# model.add(Dense(1))
# model.compile(optimizer='adam', loss='mse',
# metrics=[keras.metrics.RootMeanSquaredError(),
# keras.metrics.MeanAbsolutePercentageError()])
# model.fit(X_train, Y_train, epochs=2000, verbose=0)
# predictions = []
# for index in range(len(X)):
# x_input = X[index]
# x_input = x_input.reshape((1, 12))
# yhat = model.predict(x_input)
# predictions.append(yhat)
# print(yhat)
# predictions = np.array(predictions)
# print(model.evaluate(X, Y))
# plt.plot(range(len(Y)), Y)
# plt.plot(range(0, len(predictions)), predictions.reshape((400, 1)))
# plt.show()
# 1D CNN model
# reshape from [samples, timesteps] into [samples, timesteps, features]
# n_steps = 12
# n_features = 1
# X_train = X_train.reshape([X.shape[0], X.shape[1], n_features])
# model = Sequential()
# model.add(Conv1D(filters=16, kernel_size=3, activation='relu',
# input_shape=(n_steps, n_features)))
# model.add(MaxPooling1D(pool_size=2))
# model.add(Flatten())
# model.add(Dense(16, activation='relu'))
# model.add(Dense(1))
# model.compile(optimizer='adam', loss='mse',
# metrics=[keras.metrics.RootMeanSquaredError(),
# keras.metrics.MeanAbsolutePercentageError()])
# # fit model
# model.fit(X_train, Y_train, epochs=1000, verbose=0)
# # demonstrate prediction
# predictions = []
# for index in range(len(X)):
# x_input = X[index]
# x_input = x_input.reshape((1, 12, 1))
# yhat = model.predict(x_input)
# predictions.append(yhat)
# print(yhat)
# predictions = np.array(predictions)
# print(model.evaluate(X_test.reshape(X_test.shape[0], X_test.shape[1],
# n_features), Y_test))
# plt.plot(range(len(Y)), Y)
# plt.plot(range(0, len(predictions)), predictions.reshape((400, 1)))
# plt.show()