-
Notifications
You must be signed in to change notification settings - Fork 55
/
entropy_encode.go
592 lines (515 loc) · 13.7 KB
/
entropy_encode.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
package brotli
import "math"
/* Copyright 2010 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
/* Entropy encoding (Huffman) utilities. */
/* A node of a Huffman tree. */
type huffmanTree struct {
total_count_ uint32
index_left_ int16
index_right_or_value_ int16
}
func initHuffmanTree(self *huffmanTree, count uint32, left int16, right int16) {
self.total_count_ = count
self.index_left_ = left
self.index_right_or_value_ = right
}
/* Input size optimized Shell sort. */
type huffmanTreeComparator func(huffmanTree, huffmanTree) bool
var sortHuffmanTreeItems_gaps = []uint{132, 57, 23, 10, 4, 1}
func sortHuffmanTreeItems(items []huffmanTree, n uint, comparator huffmanTreeComparator) {
if n < 13 {
/* Insertion sort. */
var i uint
for i = 1; i < n; i++ {
var tmp huffmanTree = items[i]
var k uint = i
var j uint = i - 1
for comparator(tmp, items[j]) {
items[k] = items[j]
k = j
if j == 0 {
break
}
j--
}
items[k] = tmp
}
return
} else {
var g int
if n < 57 {
g = 2
} else {
g = 0
}
for ; g < 6; g++ {
var gap uint = sortHuffmanTreeItems_gaps[g]
var i uint
for i = gap; i < n; i++ {
var j uint = i
var tmp huffmanTree = items[i]
for ; j >= gap && comparator(tmp, items[j-gap]); j -= gap {
items[j] = items[j-gap]
}
items[j] = tmp
}
}
}
}
/* Returns 1 if assignment of depths succeeded, otherwise 0. */
func setDepth(p0 int, pool []huffmanTree, depth []byte, max_depth int) bool {
var stack [16]int
var level int = 0
var p int = p0
assert(max_depth <= 15)
stack[0] = -1
for {
if pool[p].index_left_ >= 0 {
level++
if level > max_depth {
return false
}
stack[level] = int(pool[p].index_right_or_value_)
p = int(pool[p].index_left_)
continue
} else {
depth[pool[p].index_right_or_value_] = byte(level)
}
for level >= 0 && stack[level] == -1 {
level--
}
if level < 0 {
return true
}
p = stack[level]
stack[level] = -1
}
}
/* Sort the root nodes, least popular first. */
func sortHuffmanTree(v0 huffmanTree, v1 huffmanTree) bool {
if v0.total_count_ != v1.total_count_ {
return v0.total_count_ < v1.total_count_
}
return v0.index_right_or_value_ > v1.index_right_or_value_
}
/* This function will create a Huffman tree.
The catch here is that the tree cannot be arbitrarily deep.
Brotli specifies a maximum depth of 15 bits for "code trees"
and 7 bits for "code length code trees."
count_limit is the value that is to be faked as the minimum value
and this minimum value is raised until the tree matches the
maximum length requirement.
This algorithm is not of excellent performance for very long data blocks,
especially when population counts are longer than 2**tree_limit, but
we are not planning to use this with extremely long blocks.
See http://en.wikipedia.org/wiki/Huffman_coding */
func createHuffmanTree(data []uint32, length uint, tree_limit int, tree []huffmanTree, depth []byte) {
var count_limit uint32
var sentinel huffmanTree
initHuffmanTree(&sentinel, math.MaxUint32, -1, -1)
/* For block sizes below 64 kB, we never need to do a second iteration
of this loop. Probably all of our block sizes will be smaller than
that, so this loop is mostly of academic interest. If we actually
would need this, we would be better off with the Katajainen algorithm. */
for count_limit = 1; ; count_limit *= 2 {
var n uint = 0
var i uint
var j uint
var k uint
for i = length; i != 0; {
i--
if data[i] != 0 {
var count uint32 = brotli_max_uint32_t(data[i], count_limit)
initHuffmanTree(&tree[n], count, -1, int16(i))
n++
}
}
if n == 1 {
depth[tree[0].index_right_or_value_] = 1 /* Only one element. */
break
}
sortHuffmanTreeItems(tree, n, huffmanTreeComparator(sortHuffmanTree))
/* The nodes are:
[0, n): the sorted leaf nodes that we start with.
[n]: we add a sentinel here.
[n + 1, 2n): new parent nodes are added here, starting from
(n+1). These are naturally in ascending order.
[2n]: we add a sentinel at the end as well.
There will be (2n+1) elements at the end. */
tree[n] = sentinel
tree[n+1] = sentinel
i = 0 /* Points to the next leaf node. */
j = n + 1 /* Points to the next non-leaf node. */
for k = n - 1; k != 0; k-- {
var left uint
var right uint
if tree[i].total_count_ <= tree[j].total_count_ {
left = i
i++
} else {
left = j
j++
}
if tree[i].total_count_ <= tree[j].total_count_ {
right = i
i++
} else {
right = j
j++
}
{
/* The sentinel node becomes the parent node. */
var j_end uint = 2*n - k
tree[j_end].total_count_ = tree[left].total_count_ + tree[right].total_count_
tree[j_end].index_left_ = int16(left)
tree[j_end].index_right_or_value_ = int16(right)
/* Add back the last sentinel node. */
tree[j_end+1] = sentinel
}
}
if setDepth(int(2*n-1), tree[0:], depth, tree_limit) {
/* We need to pack the Huffman tree in tree_limit bits. If this was not
successful, add fake entities to the lowest values and retry. */
break
}
}
}
func reverse(v []byte, start uint, end uint) {
end--
for start < end {
var tmp byte = v[start]
v[start] = v[end]
v[end] = tmp
start++
end--
}
}
func writeHuffmanTreeRepetitions(previous_value byte, value byte, repetitions uint, tree_size *uint, tree []byte, extra_bits_data []byte) {
assert(repetitions > 0)
if previous_value != value {
tree[*tree_size] = value
extra_bits_data[*tree_size] = 0
(*tree_size)++
repetitions--
}
if repetitions == 7 {
tree[*tree_size] = value
extra_bits_data[*tree_size] = 0
(*tree_size)++
repetitions--
}
if repetitions < 3 {
var i uint
for i = 0; i < repetitions; i++ {
tree[*tree_size] = value
extra_bits_data[*tree_size] = 0
(*tree_size)++
}
} else {
var start uint = *tree_size
repetitions -= 3
for {
tree[*tree_size] = repeatPreviousCodeLength
extra_bits_data[*tree_size] = byte(repetitions & 0x3)
(*tree_size)++
repetitions >>= 2
if repetitions == 0 {
break
}
repetitions--
}
reverse(tree, start, *tree_size)
reverse(extra_bits_data, start, *tree_size)
}
}
func writeHuffmanTreeRepetitionsZeros(repetitions uint, tree_size *uint, tree []byte, extra_bits_data []byte) {
if repetitions == 11 {
tree[*tree_size] = 0
extra_bits_data[*tree_size] = 0
(*tree_size)++
repetitions--
}
if repetitions < 3 {
var i uint
for i = 0; i < repetitions; i++ {
tree[*tree_size] = 0
extra_bits_data[*tree_size] = 0
(*tree_size)++
}
} else {
var start uint = *tree_size
repetitions -= 3
for {
tree[*tree_size] = repeatZeroCodeLength
extra_bits_data[*tree_size] = byte(repetitions & 0x7)
(*tree_size)++
repetitions >>= 3
if repetitions == 0 {
break
}
repetitions--
}
reverse(tree, start, *tree_size)
reverse(extra_bits_data, start, *tree_size)
}
}
/* Change the population counts in a way that the consequent
Huffman tree compression, especially its RLE-part will be more
likely to compress this data more efficiently.
length contains the size of the histogram.
counts contains the population counts.
good_for_rle is a buffer of at least length size */
func optimizeHuffmanCountsForRLE(length uint, counts []uint32, good_for_rle []byte) {
var nonzero_count uint = 0
var stride uint
var limit uint
var sum uint
var streak_limit uint = 1240
var i uint
/* Let's make the Huffman code more compatible with RLE encoding. */
for i = 0; i < length; i++ {
if counts[i] != 0 {
nonzero_count++
}
}
if nonzero_count < 16 {
return
}
for length != 0 && counts[length-1] == 0 {
length--
}
if length == 0 {
return /* All zeros. */
}
/* Now counts[0..length - 1] does not have trailing zeros. */
{
var nonzeros uint = 0
var smallest_nonzero uint32 = 1 << 30
for i = 0; i < length; i++ {
if counts[i] != 0 {
nonzeros++
if smallest_nonzero > counts[i] {
smallest_nonzero = counts[i]
}
}
}
if nonzeros < 5 {
/* Small histogram will model it well. */
return
}
if smallest_nonzero < 4 {
var zeros uint = length - nonzeros
if zeros < 6 {
for i = 1; i < length-1; i++ {
if counts[i-1] != 0 && counts[i] == 0 && counts[i+1] != 0 {
counts[i] = 1
}
}
}
}
if nonzeros < 28 {
return
}
}
/* 2) Let's mark all population counts that already can be encoded
with an RLE code. */
for i := 0; i < int(length); i++ {
good_for_rle[i] = 0
}
{
var symbol uint32 = counts[0]
/* Let's not spoil any of the existing good RLE codes.
Mark any seq of 0's that is longer as 5 as a good_for_rle.
Mark any seq of non-0's that is longer as 7 as a good_for_rle. */
var step uint = 0
for i = 0; i <= length; i++ {
if i == length || counts[i] != symbol {
if (symbol == 0 && step >= 5) || (symbol != 0 && step >= 7) {
var k uint
for k = 0; k < step; k++ {
good_for_rle[i-k-1] = 1
}
}
step = 1
if i != length {
symbol = counts[i]
}
} else {
step++
}
}
}
/* 3) Let's replace those population counts that lead to more RLE codes.
Math here is in 24.8 fixed point representation. */
stride = 0
limit = uint(256*(counts[0]+counts[1]+counts[2])/3 + 420)
sum = 0
for i = 0; i <= length; i++ {
if i == length || good_for_rle[i] != 0 || (i != 0 && good_for_rle[i-1] != 0) || (256*counts[i]-uint32(limit)+uint32(streak_limit)) >= uint32(2*streak_limit) {
if stride >= 4 || (stride >= 3 && sum == 0) {
var k uint
var count uint = (sum + stride/2) / stride
/* The stride must end, collapse what we have, if we have enough (4). */
if count == 0 {
count = 1
}
if sum == 0 {
/* Don't make an all zeros stride to be upgraded to ones. */
count = 0
}
for k = 0; k < stride; k++ {
/* We don't want to change value at counts[i],
that is already belonging to the next stride. Thus - 1. */
counts[i-k-1] = uint32(count)
}
}
stride = 0
sum = 0
if i < length-2 {
/* All interesting strides have a count of at least 4, */
/* at least when non-zeros. */
limit = uint(256*(counts[i]+counts[i+1]+counts[i+2])/3 + 420)
} else if i < length {
limit = uint(256 * counts[i])
} else {
limit = 0
}
}
stride++
if i != length {
sum += uint(counts[i])
if stride >= 4 {
limit = (256*sum + stride/2) / stride
}
if stride == 4 {
limit += 120
}
}
}
}
func decideOverRLEUse(depth []byte, length uint, use_rle_for_non_zero *bool, use_rle_for_zero *bool) {
var total_reps_zero uint = 0
var total_reps_non_zero uint = 0
var count_reps_zero uint = 1
var count_reps_non_zero uint = 1
var i uint
for i = 0; i < length; {
var value byte = depth[i]
var reps uint = 1
var k uint
for k = i + 1; k < length && depth[k] == value; k++ {
reps++
}
if reps >= 3 && value == 0 {
total_reps_zero += reps
count_reps_zero++
}
if reps >= 4 && value != 0 {
total_reps_non_zero += reps
count_reps_non_zero++
}
i += reps
}
*use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero*2
*use_rle_for_zero = total_reps_zero > count_reps_zero*2
}
/* Write a Huffman tree from bit depths into the bit-stream representation
of a Huffman tree. The generated Huffman tree is to be compressed once
more using a Huffman tree */
func writeHuffmanTree(depth []byte, length uint, tree_size *uint, tree []byte, extra_bits_data []byte) {
var previous_value byte = initialRepeatedCodeLength
var i uint
var use_rle_for_non_zero bool = false
var use_rle_for_zero bool = false
var new_length uint = length
/* Throw away trailing zeros. */
for i = 0; i < length; i++ {
if depth[length-i-1] == 0 {
new_length--
} else {
break
}
}
/* First gather statistics on if it is a good idea to do RLE. */
if length > 50 {
/* Find RLE coding for longer codes.
Shorter codes seem not to benefit from RLE. */
decideOverRLEUse(depth, new_length, &use_rle_for_non_zero, &use_rle_for_zero)
}
/* Actual RLE coding. */
for i = 0; i < new_length; {
var value byte = depth[i]
var reps uint = 1
if (value != 0 && use_rle_for_non_zero) || (value == 0 && use_rle_for_zero) {
var k uint
for k = i + 1; k < new_length && depth[k] == value; k++ {
reps++
}
}
if value == 0 {
writeHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data)
} else {
writeHuffmanTreeRepetitions(previous_value, value, reps, tree_size, tree, extra_bits_data)
previous_value = value
}
i += reps
}
}
var reverseBits_kLut = [16]uint{
0x00,
0x08,
0x04,
0x0C,
0x02,
0x0A,
0x06,
0x0E,
0x01,
0x09,
0x05,
0x0D,
0x03,
0x0B,
0x07,
0x0F,
}
func reverseBits(num_bits uint, bits uint16) uint16 {
var retval uint = reverseBits_kLut[bits&0x0F]
var i uint
for i = 4; i < num_bits; i += 4 {
retval <<= 4
bits = uint16(bits >> 4)
retval |= reverseBits_kLut[bits&0x0F]
}
retval >>= ((0 - num_bits) & 0x03)
return uint16(retval)
}
/* 0..15 are values for bits */
const maxHuffmanBits = 16
/* Get the actual bit values for a tree of bit depths. */
func convertBitDepthsToSymbols(depth []byte, len uint, bits []uint16) {
var bl_count = [maxHuffmanBits]uint16{0}
var next_code [maxHuffmanBits]uint16
var i uint
/* In Brotli, all bit depths are [1..15]
0 bit depth means that the symbol does not exist. */
var code int = 0
for i = 0; i < len; i++ {
bl_count[depth[i]]++
}
bl_count[0] = 0
next_code[0] = 0
for i = 1; i < maxHuffmanBits; i++ {
code = (code + int(bl_count[i-1])) << 1
next_code[i] = uint16(code)
}
for i = 0; i < len; i++ {
if depth[i] != 0 {
bits[i] = reverseBits(uint(depth[i]), next_code[depth[i]])
next_code[depth[i]]++
}
}
}