-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathhash.go
342 lines (299 loc) · 9.19 KB
/
hash.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
package brotli
import (
"encoding/binary"
"fmt"
)
type hasherCommon struct {
params hasherParams
is_prepared_ bool
dict_num_lookups uint
dict_num_matches uint
}
func (h *hasherCommon) Common() *hasherCommon {
return h
}
type hasherHandle interface {
Common() *hasherCommon
Initialize(params *encoderParams)
Prepare(one_shot bool, input_size uint, data []byte)
StitchToPreviousBlock(num_bytes uint, position uint, ringbuffer []byte, ringbuffer_mask uint)
HashTypeLength() uint
StoreLookahead() uint
PrepareDistanceCache(distance_cache []int)
FindLongestMatch(dictionary *encoderDictionary, data []byte, ring_buffer_mask uint, distance_cache []int, cur_ix uint, max_length uint, max_backward uint, gap uint, max_distance uint, out *hasherSearchResult)
StoreRange(data []byte, mask uint, ix_start uint, ix_end uint)
Store(data []byte, mask uint, ix uint)
}
const kCutoffTransformsCount uint32 = 10
/* 0, 12, 27, 23, 42, 63, 56, 48, 59, 64 */
/* 0+0, 4+8, 8+19, 12+11, 16+26, 20+43, 24+32, 28+20, 32+27, 36+28 */
const kCutoffTransforms uint64 = 0x071B520ADA2D3200
type hasherSearchResult struct {
len uint
distance uint
score uint
len_code_delta int
}
/* kHashMul32 multiplier has these properties:
* The multiplier must be odd. Otherwise we may lose the highest bit.
* No long streaks of ones or zeros.
* There is no effort to ensure that it is a prime, the oddity is enough
for this use.
* The number has been tuned heuristically against compression benchmarks. */
const kHashMul32 uint32 = 0x1E35A7BD
const kHashMul64 uint64 = 0x1E35A7BD1E35A7BD
const kHashMul64Long uint64 = 0x1FE35A7BD3579BD3
func hash14(data []byte) uint32 {
var h uint32 = binary.LittleEndian.Uint32(data) * kHashMul32
/* The higher bits contain more mixture from the multiplication,
so we take our results from there. */
return h >> (32 - 14)
}
func prepareDistanceCache(distance_cache []int, num_distances int) {
if num_distances > 4 {
var last_distance int = distance_cache[0]
distance_cache[4] = last_distance - 1
distance_cache[5] = last_distance + 1
distance_cache[6] = last_distance - 2
distance_cache[7] = last_distance + 2
distance_cache[8] = last_distance - 3
distance_cache[9] = last_distance + 3
if num_distances > 10 {
var next_last_distance int = distance_cache[1]
distance_cache[10] = next_last_distance - 1
distance_cache[11] = next_last_distance + 1
distance_cache[12] = next_last_distance - 2
distance_cache[13] = next_last_distance + 2
distance_cache[14] = next_last_distance - 3
distance_cache[15] = next_last_distance + 3
}
}
}
const literalByteScore = 135
const distanceBitPenalty = 30
/* Score must be positive after applying maximal penalty. */
const scoreBase = (distanceBitPenalty * 8 * 8)
/* Usually, we always choose the longest backward reference. This function
allows for the exception of that rule.
If we choose a backward reference that is further away, it will
usually be coded with more bits. We approximate this by assuming
log2(distance). If the distance can be expressed in terms of the
last four distances, we use some heuristic constants to estimate
the bits cost. For the first up to four literals we use the bit
cost of the literals from the literal cost model, after that we
use the average bit cost of the cost model.
This function is used to sometimes discard a longer backward reference
when it is not much longer and the bit cost for encoding it is more
than the saved literals.
backward_reference_offset MUST be positive. */
func backwardReferenceScore(copy_length uint, backward_reference_offset uint) uint {
return scoreBase + literalByteScore*uint(copy_length) - distanceBitPenalty*uint(log2FloorNonZero(backward_reference_offset))
}
func backwardReferenceScoreUsingLastDistance(copy_length uint) uint {
return literalByteScore*uint(copy_length) + scoreBase + 15
}
func backwardReferencePenaltyUsingLastDistance(distance_short_code uint) uint {
return uint(39) + ((0x1CA10 >> (distance_short_code & 0xE)) & 0xE)
}
func testStaticDictionaryItem(dictionary *encoderDictionary, item uint, data []byte, max_length uint, max_backward uint, max_distance uint, out *hasherSearchResult) bool {
var len uint
var word_idx uint
var offset uint
var matchlen uint
var backward uint
var score uint
len = item & 0x1F
word_idx = item >> 5
offset = uint(dictionary.words.offsets_by_length[len]) + len*word_idx
if len > max_length {
return false
}
matchlen = findMatchLengthWithLimit(data, dictionary.words.data[offset:], uint(len))
if matchlen+uint(dictionary.cutoffTransformsCount) <= len || matchlen == 0 {
return false
}
{
var cut uint = len - matchlen
var transform_id uint = (cut << 2) + uint((dictionary.cutoffTransforms>>(cut*6))&0x3F)
backward = max_backward + 1 + word_idx + (transform_id << dictionary.words.size_bits_by_length[len])
}
if backward > max_distance {
return false
}
score = backwardReferenceScore(matchlen, backward)
if score < out.score {
return false
}
out.len = matchlen
out.len_code_delta = int(len) - int(matchlen)
out.distance = backward
out.score = score
return true
}
func searchInStaticDictionary(dictionary *encoderDictionary, handle hasherHandle, data []byte, max_length uint, max_backward uint, max_distance uint, out *hasherSearchResult, shallow bool) {
var key uint
var i uint
var self *hasherCommon = handle.Common()
if self.dict_num_matches < self.dict_num_lookups>>7 {
return
}
key = uint(hash14(data) << 1)
for i = 0; ; (func() { i++; key++ })() {
var tmp uint
if shallow {
tmp = 1
} else {
tmp = 2
}
if i >= tmp {
break
}
var item uint = uint(dictionary.hash_table[key])
self.dict_num_lookups++
if item != 0 {
var item_matches bool = testStaticDictionaryItem(dictionary, item, data, max_length, max_backward, max_distance, out)
if item_matches {
self.dict_num_matches++
}
}
}
}
type backwardMatch struct {
distance uint32
length_and_code uint32
}
func initBackwardMatch(self *backwardMatch, dist uint, len uint) {
self.distance = uint32(dist)
self.length_and_code = uint32(len << 5)
}
func initDictionaryBackwardMatch(self *backwardMatch, dist uint, len uint, len_code uint) {
self.distance = uint32(dist)
var tmp uint
if len == len_code {
tmp = 0
} else {
tmp = len_code
}
self.length_and_code = uint32(len<<5 | tmp)
}
func backwardMatchLength(self *backwardMatch) uint {
return uint(self.length_and_code >> 5)
}
func backwardMatchLengthCode(self *backwardMatch) uint {
var code uint = uint(self.length_and_code) & 31
if code != 0 {
return code
} else {
return backwardMatchLength(self)
}
}
func hasherReset(handle hasherHandle) {
if handle == nil {
return
}
handle.Common().is_prepared_ = false
}
func newHasher(typ int) hasherHandle {
switch typ {
case 2:
return &hashLongestMatchQuickly{
bucketBits: 16,
bucketSweep: 1,
hashLen: 5,
useDictionary: true,
}
case 3:
return &hashLongestMatchQuickly{
bucketBits: 16,
bucketSweep: 2,
hashLen: 5,
useDictionary: false,
}
case 4:
return &hashLongestMatchQuickly{
bucketBits: 17,
bucketSweep: 4,
hashLen: 5,
useDictionary: true,
}
case 5:
return new(h5)
case 6:
return new(h6)
case 10:
return new(h10)
case 35:
return &hashComposite{
ha: newHasher(3),
hb: &hashRolling{jump: 4},
}
case 40:
return &hashForgetfulChain{
bucketBits: 15,
numBanks: 1,
bankBits: 16,
numLastDistancesToCheck: 4,
}
case 41:
return &hashForgetfulChain{
bucketBits: 15,
numBanks: 1,
bankBits: 16,
numLastDistancesToCheck: 10,
}
case 42:
return &hashForgetfulChain{
bucketBits: 15,
numBanks: 512,
bankBits: 9,
numLastDistancesToCheck: 16,
}
case 54:
return &hashLongestMatchQuickly{
bucketBits: 20,
bucketSweep: 4,
hashLen: 7,
useDictionary: false,
}
case 55:
return &hashComposite{
ha: newHasher(54),
hb: &hashRolling{jump: 4},
}
case 65:
return &hashComposite{
ha: newHasher(6),
hb: &hashRolling{jump: 1},
}
}
panic(fmt.Sprintf("unknown hasher type: %d", typ))
}
func hasherSetup(handle *hasherHandle, params *encoderParams, data []byte, position uint, input_size uint, is_last bool) {
var self hasherHandle = nil
var common *hasherCommon = nil
var one_shot bool = (position == 0 && is_last)
if *handle == nil {
chooseHasher(params, ¶ms.hasher)
self = newHasher(params.hasher.type_)
*handle = self
common = self.Common()
common.params = params.hasher
self.Initialize(params)
}
self = *handle
common = self.Common()
if !common.is_prepared_ {
self.Prepare(one_shot, input_size, data)
if position == 0 {
common.dict_num_lookups = 0
common.dict_num_matches = 0
}
common.is_prepared_ = true
}
}
func initOrStitchToPreviousBlock(handle *hasherHandle, data []byte, mask uint, params *encoderParams, position uint, input_size uint, is_last bool) {
var self hasherHandle
hasherSetup(handle, params, data, position, input_size, is_last)
self = *handle
self.StitchToPreviousBlock(input_size, position, data, mask)
}