From 3a1be4ecdf59d29b72393e25506c4e21f26bf262 Mon Sep 17 00:00:00 2001 From: Andy Kee Date: Thu, 30 Nov 2023 21:35:17 -0800 Subject: [PATCH] Make docs numpydoc compliant --- lentil/detector.py | 16 ++++++++-------- lentil/plane.py | 2 +- lentil/radiometry.py | 12 ++++++------ lentil/util.py | 4 ++-- lentil/wfe.py | 4 ++-- lentil/zernike.py | 12 ++++++------ 6 files changed, 25 insertions(+), 25 deletions(-) diff --git a/lentil/detector.py b/lentil/detector.py index cddd7d8..8be9001 100644 --- a/lentil/detector.py +++ b/lentil/detector.py @@ -153,8 +153,8 @@ def pixel(img, oversample=1): out : ndarray Image with pixel sampling effects applied. - Example - ------- + Examples + -------- Apply pixel MTF to a 3x oversampled PSF: .. code:: pycon @@ -209,8 +209,8 @@ def pixelate(img, oversample): img : ndarray Rescaled image with pixel MTF applied - Note - ---- + Notes + ----- ``pixelate`` should only be used if ``oversample`` > 2 See Also @@ -258,8 +258,8 @@ def adc(img, gain, saturation_capacity=None, warn_saturate=False, dtype=None): img : ndarray Array of DN - Note - ---- + Notes + ----- The saturation capacity should not be confused with the full-well capacity. Saturation capacity is typically smaller than the full well capacity because the signal is clipped before the physical saturation of the pixel is @@ -572,8 +572,8 @@ def cosmic_rays(shape, pixelscale, ts, rate=4e4, proton_flux=1e9, alpha_flux=4e9 Array representing the number of electrons in a detector image due to cosmic ray hits - Example - ------- + Examples + -------- Simulate the cosmic ray hits for a 2000 second exposure over a 256 x 256 detector patch with 5 um x 5 um x 3 um pixels: diff --git a/lentil/plane.py b/lentil/plane.py index 47c230e..b16efa3 100644 --- a/lentil/plane.py +++ b/lentil/plane.py @@ -125,7 +125,7 @@ def mask(self, value): @property def global_mask(self): """ - Flattened view of :attr:`~mask` + Flattened view of :attr:`mask` Returns ------- diff --git a/lentil/radiometry.py b/lentil/radiometry.py index 475d39b..c13c269 100644 --- a/lentil/radiometry.py +++ b/lentil/radiometry.py @@ -641,8 +641,8 @@ def trim(self, tol=1e-4): tol : float, optional Relative tolerance used to find ends. Default is 1e-4 - Note - ---- + Notes + ----- If :attr:`~radiometry.Spectrum.value` is all zeros, no trim operation is performed and the Spectrum remains unchanged. @@ -1102,16 +1102,16 @@ class Material: :attr:`~lentil.radiometry.Material.emission` are multiplied by contam before being returned. - Note - ---- + Notes + ----- There is no explicit reflection attribute. Reflective optics should use the :attr:`~lentil.radiometry.Material.transmission` attribute to represent reflectivity. See Also -------- - * :func:`lentil.radiometry.path_transmission` - * :func:`lentil.radiometry.path_emission` + radiometry.path_transmission + radiometry.path_emission """ def __init__(self, transmission=1, emission=0, contam=1): diff --git a/lentil/util.py b/lentil/util.py index dc6c730..ec3e9be 100644 --- a/lentil/util.py +++ b/lentil/util.py @@ -385,8 +385,8 @@ def rescale(img, scale, shape=None, mask=None, order=3, mode='nearest', img : ndarray Rescaled image. - Note - ---- + Notes + ----- The post-rescale masking operation should have no real effect on the resulting image but is included to eliminate interpolation artifacts that sometimes appear in large clusters of zeros in rescaled images. diff --git a/lentil/wfe.py b/lentil/wfe.py index 9afffda..d8af20f 100644 --- a/lentil/wfe.py +++ b/lentil/wfe.py @@ -90,8 +90,8 @@ def translation_defocus(mask, f_number, translation): wfe : ndarray Focus error due to axial translation - Warning - ------- + Warnings + -------- Defocus is computed over a circular pupal defined by the maximum horizontal or vertical extent of the supplied mask before applying the mask. As a result, the RMS and peak-to-valley wavefront measurements diff --git a/lentil/zernike.py b/lentil/zernike.py index e3fe4ed..f24577e 100644 --- a/lentil/zernike.py +++ b/lentil/zernike.py @@ -36,8 +36,8 @@ def zernike(mask, index, normalize=True, rho=None, theta=None): out Circular Zernike polynomial computed over the given mask. - Warning - ------- + Warnings + -------- Zernike polynomials are defined to be orthogonal on the unit circle. If the supplied mask is non-circular, the Zernike polynomial is computed on an outscribing circle and then cropped by the mask. Note that this operation @@ -268,8 +268,8 @@ def zernike_fit(opd, mask, modes, normalize=True, rho=None, theta=None): List of coefficients fit to the supplied OPD over the specified number of Zernike modes. - Example - ------- + Examples + -------- .. code:: pycon >>> import numpy as np @@ -286,7 +286,7 @@ def zernike_fit(opd, mask, modes, normalize=True, rho=None, theta=None): See Also -------- - :func:`zernike_remove` Fit and remove a Zernike basis set from an OPD. + zernike_remove : Fit and remove a Zernike basis set from an OPD. References ---------- @@ -333,7 +333,7 @@ def zernike_remove(opd, mask, modes, rho=None, theta=None): See Also -------- - :func:`zernike_fit` + zernike_fit References ----------