-
Notifications
You must be signed in to change notification settings - Fork 1
/
nnCostFunction.m
74 lines (61 loc) · 2.37 KB
/
nnCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% Forward Propagation start
X = [ones(m,1) X];
a1 = X;
z2 = a1*Theta1';
a2 = sigmoid(z2);
a2 = [ones(m,1) a2];
z3 = a2*Theta2';
h = sigmoid(z3);
ynew = zeros(m,num_labels);
for i=1:m,
ynew(i,y(i))=1;
end
% J is logistic regression cost function with regularization
J = (1/m)*sum(sum((-ynew.*log(h))-((1-ynew).*log(1-h))));
J = J + (lambda/(2*m))*(sum(sum(Theta1(:,2:end).^2)) + sum(sum(Theta2(:,2:end).^2)));
% Forward propagation end
% Backward Propagation start
a1 = X;
z2 = a1*Theta1';
a2 = sigmoid(z2);
a2 = [ones(m,1) a2];
z3 = a2*Theta2';
a3 = sigmoid(z3);
delta3 = a3-ynew;
delta2 = (delta3*Theta2).*[ones(m,1) sigmoidGradient(z2)];
delta2 = delta2(:,2:end);
Theta2_grad = Theta2_grad + delta3'*a2;
Theta1_grad = Theta1_grad + delta2'*a1;
Theta1_grad = Theta1_grad./m;
Theta2_grad = Theta2_grad./m;
Theta1_grad = Theta1_grad + (lambda/m)*[zeros(size(Theta1,1),1) Theta1(:,2:end)];
Theta2_grad = Theta2_grad + (lambda/m)*[zeros(size(Theta2,1),1) Theta2(:,2:end)];
% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end