forked from timctho/VNect-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
147 lines (108 loc) · 5.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from OpenGL.GL import *
from OpenGL.GLU import *
def read_square_image(file, cam, boxsize, type):
# from file
if type == 'IMAGE':
oriImg = cv2.imread(file)
# from webcam
elif type == 'WEBCAM':
_, oriImg = cam.read()
scale = boxsize / (oriImg.shape[0] * 1.0)
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LANCZOS4)
output_img = np.ones((boxsize, boxsize, 3)) * 128
if imageToTest.shape[1] < boxsize:
offset = imageToTest.shape[1] % 2
output_img[:, int(boxsize/2-math.ceil(imageToTest.shape[1]/2)):int(boxsize/2+math.ceil(imageToTest.shape[1]/2)+offset), :] = imageToTest
else:
output_img = imageToTest[:, int(imageToTest.shape[1]/2-boxsize/2):int(imageToTest.shape[1]/2+boxsize/2), :]
return output_img
def resize_pad_img(img, scale, output_size):
resized_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
pad_h = (output_size - resized_img.shape[0]) // 2
pad_w = (output_size - resized_img.shape[1]) // 2
pad_h_offset = (output_size - resized_img.shape[0]) % 2
pad_w_offset = (output_size - resized_img.shape[1]) % 2
resized_pad_img = np.pad(resized_img, ((pad_w, pad_w+pad_w_offset), (pad_h, pad_h+pad_h_offset), (0, 0)),
mode='constant', constant_values=128)
return resized_pad_img
def draw_predicted_heatmap(heatmap, input_size):
heatmap_resized = cv2.resize(heatmap, (input_size, input_size))
output_img = None
tmp_concat_img = None
h_count = 0
for joint_num in range(heatmap_resized.shape[2]):
if h_count < 4:
tmp_concat_img = np.concatenate((tmp_concat_img, heatmap_resized[:, :, joint_num]), axis=1) \
if tmp_concat_img is not None else heatmap_resized[:, :, joint_num]
h_count += 1
else:
output_img = np.concatenate((output_img, tmp_concat_img), axis=0) if output_img is not None else tmp_concat_img
tmp_concat_img = None
h_count = 0
# last row img
if h_count != 0:
while h_count < 4:
tmp_concat_img = np.concatenate((tmp_concat_img, np.zeros(shape=(input_size, input_size), dtype=np.float32)), axis=1)
h_count += 1
output_img = np.concatenate((output_img, tmp_concat_img), axis=0)
# adjust heatmap color
output_img = output_img.astype(np.uint8)
output_img = cv2.applyColorMap(output_img, cv2.COLORMAP_JET)
return output_img
def extract_2d_joint_from_heatmap(heatmap, input_size, joints_2d):
heatmap_resized = cv2.resize(heatmap, (input_size, input_size))
for joint_num in range(heatmap_resized.shape[2]):
joint_coord = np.unravel_index(np.argmax(heatmap_resized[:, :, joint_num]), (input_size, input_size))
joints_2d[joint_num, :] = joint_coord
return joints_2d
def extract_3d_joints_from_heatmap(joints_2d, x_hm, y_hm, z_hm, input_size, joints_3d):
for joint_num in range(x_hm.shape[2]):
coord_2d_y = joints_2d[joint_num][0]
coord_2d_x = joints_2d[joint_num][1]
# x_hm_resized = cv2.resize(x_hm, (input_size, input_size))
# y_hm_resized = cv2.resize(y_hm, (input_size, input_size))
# z_hm_resized = cv2.resize(z_hm, (input_size, input_size))
# joint_x = x_hm_resized[max(int(coord_2d_x), 1), max(int(coord_2d_y), 1), joint_num] * 100
# joint_y = y_hm_resized[max(int(coord_2d_x), 1), max(int(coord_2d_y), 1), joint_num] * 100
# joint_z = z_hm_resized[max(int(coord_2d_x), 1), max(int(coord_2d_y), 1), joint_num] * 100
joint_x = x_hm[max(int(coord_2d_x/8), 1), max(int(coord_2d_y/8), 1), joint_num] * 10
joint_y = y_hm[max(int(coord_2d_x/8), 1), max(int(coord_2d_y/8), 1), joint_num] * 10
joint_z = z_hm[max(int(coord_2d_x/8), 1), max(int(coord_2d_y/8), 1), joint_num] * 10
joints_3d[joint_num, 0] = joint_x
joints_3d[joint_num, 1] = joint_y
joints_3d[joint_num, 2] = joint_z
joints_3d -= joints_3d[14, :]
return joints_3d
def draw_limbs_2d(img, joints_2d, limb_parents):
for limb_num in range(len(limb_parents)-1):
x1 = joints_2d[limb_num, 0]
y1 = joints_2d[limb_num, 1]
x2 = joints_2d[limb_parents[limb_num], 0]
y2 = joints_2d[limb_parents[limb_num], 1]
length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
# if length < 10000 and length > 5:
deg = math.degrees(math.atan2(x1 - x2, y1 - y2))
polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int((x1 + x2) / 2)),
(int(length / 2), 3),
int(deg),
0, 360, 1)
cv2.fillConvexPoly(img, polygon, color=(0,255,0))
return img
def draw_limbs_3d(joints_3d, limb_parents, ax):
for i in range(joints_3d.shape[0]):
x_pair = [joints_3d[i, 0], joints_3d[limb_parents[i], 0]]
y_pair = [joints_3d[i, 1], joints_3d[limb_parents[i], 1]]
z_pair = [joints_3d[i, 2], joints_3d[limb_parents[i], 2]]
ax.plot(x_pair, y_pair, zs=z_pair, linewidth=3)
def draw_limb_3d_gl(joints_3d, limb_parents):
glBegin(GL_LINES)
for i in range(joints_3d.shape[0]):
print(joints_3d[i, :])
glVertex3fv((joints_3d[i, 0], joints_3d[i, 1], joints_3d[i, 2]))
glVertex3fv((joints_3d[limb_parents[i], 0], joints_3d[limb_parents[i], 1], joints_3d[limb_parents[i], 2]))
glEnd()