-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKD_train.py
416 lines (330 loc) · 14.3 KB
/
KD_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import argparse
import os
import time
import apex
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
import torch.nn as nn
from alfred.utils.log import logger
from apex.parallel import convert_syncbn_model, DistributedDataParallel as DDP
from sklearn.model_selection import KFold
from configs.config import get_cfg_defaults
from data.dataloader import create_dataloader
from lib.model import get_model
from lib.optimizer import get_optimizer
from lib.scheduler import CosineWarmupLr
from lib.tensorboard import get_tensorboard_writer
from losses.losses import get_loss
from utils.env_info import get_env_info
from utils.get_rank import get_rank
from utils.metrics import accuracy, AverageMeter, ProgressMeter
from utils.save import save_checkpoint, create_logFile
from utils.set_seed import set_seed
from torchvision.models import mobilenet_v2
from lib.use_model import choice_model
import torch.nn.functional as F
def loss_fn_kd(outputs, labels, teacher_outputs, T, alpha):
"""
Compute the knowledge-distillation (KD) loss given outputs, labels.
"Hyperparameters": temperature and alpha
NOTE: the KL Divergence for PyTorch comparing the softmaxs of teacher
and student expects the input tensor to be log probabilities!
"""
KD_loss = nn.KLDivLoss()(F.log_softmax(outputs/T, dim=1),
F.softmax(teacher_outputs/T, dim=1)) * (alpha * T * T) + \
F.cross_entropy(outputs, labels) * (1. - alpha)
return KD_loss
def Mobilenetv2(num_classes, test=False):
model = mobilenet_v2()
state_dict = torch.hub.load_state_dict_from_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
progress=True)
model.load_state_dict(state_dict)
fc_features = model.classifier[1].in_features
model.classifier = nn.Linear(fc_features, num_classes)
model = model.cuda()
return model
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--configs', type=str, default=None,
help='the yml which include all parameters!')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
torch.backends.cudnn.benchmark = True
global_step = 0
def get_config():
config = get_cfg_defaults()
if args.configs:
yml_file = args.configs
config.merge_from_file(yml_file)
config.merge_from_list(['dist_local_rank', args.local_rank])
config.freeze()
return config
def load_model(config):
model = choice_model(config.model.name, config.model.num_classes)
if torch.cuda.is_available():
model = model.cuda()
ch = torch.load(config.model.checkpoint)
model.load_state_dict(ch['state_dict'])
return model
def train(config, epoch, train_loader, model, optimizer, scheduler, train_loss, writer):
global global_step
# switch to train mode
model.train()
device = torch.device(config.device)
print('device: ', device)
logger.info(f'Epoches: {epoch}/{config.train.epoches}')
# mertric
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, losses, top1, top5)
end = time.time()
# train
for step, (images, targets) in enumerate(train_loader):
global_step += 1
step += 1
images = images.to(device,
non_blocking=config.train.dataloader.non_blocking)
targets = targets.to(device,
non_blocking=config.train.dataloader.non_blocking)
outputs = model(images)
optimizer.zero_grad()
loss = train_loss(outputs, targets)
if config.apex:
with apex.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
if config.dist:
loss_reduce = dist.all_reduce(loss, op=dist.ReduceOp.SUM, async_op=True)
acc1_reduce = dist.all_reduce(acc1, op=dist.ReduceOp.SUM, async_op=True)
acc5_reduce = dist.all_reduce(acc5, op=dist.ReduceOp.SUM, async_op=True)
loss_reduce.wait()
acc1_reduce.wait()
acc5_reduce.wait()
loss.div_(dist.get_world_size())
acc1.div_(dist.get_world_size())
acc5.div_(dist.get_world_size())
batch_time.update(time.time() - end)
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
if get_rank() == 0:
if step % config.train.preiod == 0 or step == len(train_loader):
progress.pr2int(step)
# add writer
writer.add_scalar('Train/Loss', losses.avg, global_step)
writer.add_scalar('Train/Acc-Top1', top1.avg, global_step)
writer.add_scalar('Train/Acc-Top5', top5.avg, global_step)
writer.add_scalar('Train/lr', scheduler.learning_rate, global_step)
scheduler.step()
end = time.time()
def kd_train(config, epoch, train_loader, model, optimizer, scheduler, train_loss, writer, techer_model):
techer_model.eval()
global global_step
# switch to train mode
model.train()
device = torch.device(config.device)
print('device: ', device)
logger.info(f'Epoches: {epoch}/{config.train.epoches}')
# mertric
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, losses, top1, top5)
end = time.time()
# train
for step, (images, targets) in enumerate(train_loader):
global_step += 1
step += 1
images = images.to(device,
non_blocking=config.train.dataloader.non_blocking)
targets = targets.to(device,
non_blocking=config.train.dataloader.non_blocking)
outputs = model(images)
techer_outputs = techer_model(images)
optimizer.zero_grad()
loss = loss_fn_kd(outputs, targets, techer_outputs, T=10, alpha=0.5)
if config.apex:
with apex.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
if config.dist:
loss_reduce = dist.all_reduce(loss, op=dist.ReduceOp.SUM, async_op=True)
acc1_reduce = dist.all_reduce(acc1, op=dist.ReduceOp.SUM, async_op=True)
acc5_reduce = dist.all_reduce(acc5, op=dist.ReduceOp.SUM, async_op=True)
loss_reduce.wait()
acc1_reduce.wait()
acc5_reduce.wait()
loss.div_(dist.get_world_size())
acc1.div_(dist.get_world_size())
acc5.div_(dist.get_world_size())
batch_time.update(time.time() - end)
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
if get_rank() == 0:
if step % config.train.preiod == 0 or step == len(train_loader):
progress.pr2int(step)
# add writer
writer.add_scalar('Train/Loss', losses.avg, global_step)
writer.add_scalar('Train/Acc-Top1', top1.avg, global_step)
writer.add_scalar('Train/Acc-Top5', top5.avg, global_step)
writer.add_scalar('Train/lr', scheduler.learning_rate, global_step)
scheduler.step()
end = time.time()
def val(config, val_loader, model, val_loss, writer):
logger.info('Valid.......')
# switch to evaluate mode
model.eval()
device = torch.device(config.device)
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@2', ':6.2f')
with torch.no_grad():
end = time.time()
for i, (images, targets) in enumerate(val_loader):
if torch.cuda.is_available():
images = images.to(device,
non_blocking=config.train.dataloader.non_blocking)
targets = targets.to(device,
non_blocking=config.train.dataloader.non_blocking)
# compute output
output = model(images)
loss = val_loss(output, targets)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, targets, topk=(1, 5))
if config.dist:
loss_reduce = dist.all_reduce(loss, op=dist.ReduceOp.SUM, async_op=True)
acc1_reduce = dist.all_reduce(acc1, op=dist.ReduceOp.SUM, async_op=True)
acc5_reduce = dist.all_reduce(acc5, op=dist.ReduceOp.SUM, async_op=True)
loss_reduce.wait()
acc1_reduce.wait()
acc5_reduce.wait()
loss.div_(dist.get_world_size())
acc1.div_(dist.get_world_size())
acc5.div_(dist.get_world_size())
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# add writer
if get_rank() == 0:
logger.info(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
writer.add_scalar('Validate/Loss', losses.avg, global_step)
writer.add_scalar('Validate/Acc-Top1', top1.avg, global_step)
writer.add_scalar('Validate/Acc-Top5', top5.avg, global_step)
if torch.cuda.is_available():
return np.squeeze(top1.avg.cpu().numpy()), losses.avg
else:
return np.squeeze(top1.avg.numpy()), losses.avg
def message_info(config):
if get_rank() == 0:
logger.info(get_env_info())
logger.info(f'Distributed: {config.dist},'
f'Apex: {config.apex},'
f'Sync_bn: {config.dist_sync_bn}')
logger.info(f'Model name: {config.model.name}')
def main():
config = get_config()
set_seed(config.train.seed)
message_info(config)
# create log path
val_logFile, writer_logFile, save_path = create_logFile(config)
# dist --init
if config.dist:
dist.init_process_group(backend=config.dist_backend,
init_method=config.dist_init_method)
torch.cuda.set_device(config.dist_local_rank)
# tensorboard
if get_rank() == 0:
writer = get_tensorboard_writer(writer_logFile, purge_step=None)
else:
writer = None
# model
techer_models = load_model(config)
techer_models.eval()
model = Mobilenetv2(num_classes=15)
# optimizer
optimizer = get_optimizer(config, model)
if config.apex:
model, optimizer = apex.amp.initialize(model,
optimizer,
opt_level=config.apex_mode)
if config.dist:
if config.dist_sync_bn:
if config.apex:
model = convert_syncbn_model(model)
else:
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
if config.apex:
model = DDP(model, delay_allreduce=True)
else:
model = nn.parallel.DistributedDataParallel(model,
device_ids=[config.dist_local_rank],
output_device=config.dist_local_rank)
# loss
train_loss, val_loss = get_loss(config)
# load_data
data = pd.read_csv(config.train.dataset)
skf = KFold(n_splits=10, shuffle=True, random_state=452)
for fold_idx, (train_idx, val_idx) in enumerate(
skf.split(data['filename'].values, data['filename'].values)):
if fold_idx == config.train.fold:
break
# create dataloader
train_data = data.iloc[train_idx]
val_data = data.iloc[val_idx]
train_loader = create_dataloader(config, train_data, 'train')
val_loader = create_dataloader(config, val_data, 'val')
if get_rank() == 0:
logger.info(f"Splited train set: {train_data.shape}")
logger.info(f"Splited val set: {val_data.shape}")
# scheduler
scheduler = CosineWarmupLr(config, optimizer, len(train_loader))
best_precision, lowest_loss = 0, 100
for epoch in range(config.train.epoches):
# if config.dist:
# train_loader.sampler.set_epoch(epoch)
# train
train(config, epoch, train_loader, model, optimizer, scheduler, train_loss, writer)
# kd_train(config, epoch, train_loader, model, optimizer, scheduler, train_loss, writer,techer_model=techer_models)
# val
if epoch % config.train.val_preiod == 0:
precision, avg_loss = val(config, val_loader, model, val_loss, writer)
if get_rank() == 0:
with open(val_logFile, 'a') as acc_file:
acc_file.write(
f'Fold: {fold_idx:2d}, '
f'Epoch: {epoch:2d}, '
f'Precision: {precision:.8f}, '
f'Loss: {avg_loss:.8f}\n')
is_best = precision > best_precision
is_lowest_loss = avg_loss < lowest_loss
best_precision = max(precision, best_precision)
lowest_loss = min(avg_loss, lowest_loss)
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'best_precision': best_precision,
'lowest_loss': lowest_loss,
}
save_checkpoint(state, epoch, is_best, is_lowest_loss, save_path)
if get_rank() == 0:
writer.close()
torch.cuda.empty_cache()
if __name__ == '__main__':
main()