-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
138 lines (118 loc) · 4.31 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import os
import time
import sys
import cv2
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from alfred.utils.log import logger
from sklearn.metrics import classification_report
from configs.config import get_cfg_defaults
from data.dataloader import create_dataloader
from data.transform import create_transform
from lib.use_model import choice_model
# load yml_file
def get_config(args):
config = get_cfg_defaults()
if args.configs:
yml_file = args.configs
config.merge_from_file(yml_file)
if args.csv is not None:
config.merge_from_list(['test.dataset', args.csv])
config.freeze()
return config
# load model
def load_model(config):
model = choice_model(config.model.name, config.model.num_classes)
if torch.cuda.is_available():
model = model.cuda()
ch = torch.load(config.model.checkpoint)
model.load_state_dict(ch['state_dict'])
return model
def single_image(img, model):
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
trans = create_transform(config, 'test')
img = trans(image=img)['image']
img = img.unsqueeze(0)
if torch.cuda.is_available():
input = img.cuda(non_blocking=config.test.dataloader.non_blocking)
output = model(input)
output = torch.clamp(output, 0, 100)
smax = nn.Softmax()
output = smax(output)
# print(output)
_, preds = torch.max(output.data, 1)
result = preds.data.cpu().numpy()
return result
def test_csv(val_loader, model, target_names, half=False):
from tqdm import tqdm
model.eval()
test_pred = []
test_target = []
with torch.no_grad():
for i, (input, target) in tqdm(enumerate(val_loader)):
if torch.cuda.is_available():
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if half:
input = input.half()
# compute output
output = model(input)
output = torch.clamp(output, 0, 100)
smax = nn.Softmax()
output = smax(output)
if torch.cuda.is_available():
output = output.data.cpu().numpy()
target = target.data.cpu().numpy()
else:
output = output.data.numpy()
test_target.append(target)
test_pred.append(output)
test_pred = np.vstack(test_pred)
test_target = np.concatenate(test_target)
test_pred = np.argmax(test_pred,axis=1)
result = classification_report(test_target, test_pred, target_names=target_names)
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ResNeSt for image classification')
parser.add_argument('-c', '--configs', type=str, default=None,
help='the yml which include all parameters!')
parser.add_argument('--image', type=str,
default=None,
help='your image path')
parser.add_argument('--csv', type=str,
default=None,
help='in oder to test all image')
args = parser.parse_args()
config = get_config(args)
device = torch.device(config.device)
models = load_model(config)
models.eval()
# predict single image
if args.image:
logger.info('test mode: single image')
result = single_image(args.image, models)
logger.info('result:', result)
print('result:', result, 'label:', config.labels_list[int(result)])
sys.exit(0)
else:
logger.info('single image: None')
if config.test.dataset:
logger.info('test mode: csv')
# skf = KFold(n_splits=0)
test_data = pd.read_csv(config.test.dataset)
logger.info(f"test set: {test_data.shape}")
test_loader = create_dataloader(config, test_data, 'test')
result = test_csv(test_loader, models, config.labels_list, half=False)
if not os.path.exists(config.test.log_file):
with open(config.test.log_file, 'w') as f:
pass
with open(config.test.log_file, 'a') as fc:
fc.write(
'\n%s %s\n' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())),
f'{config.model}'))
fc.write(result)
print(result)