forked from daxesh020500/Object-Detection-and-tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImage Classification.py
53 lines (45 loc) · 1.77 KB
/
Image Classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from pathlib import Path
import numpy as np
from sklearn import svm, metrics, datasets
from sklearn.utils import Bunch
from sklearn.model_selection import GridSearchCV, train_test_split
from skimage.io import imread
from skimage.transform import resize
import matplotlib.pyplot as plt
def load_image_files(container_path, dimension=(64, 64)):
image_dir = Path(container_path)
folders = [directory for directory in image_dir.iterdir() if directory.is_dir()]
categories = [fo.name for fo in folders]
descr = "A image classification dataset"
images = []
flat_data = []
target = []
for i, direc in enumerate(folders):
for file in direc.iterdir():
img = imread(file)
img_resized = resize(img, dimension, anti_aliasing=True, mode='reflect')
flat_data.append(img_resized.flatten())
images.append(img_resized)
target.append(i)
flat_data = np.array(flat_data)
target = np.array(target)
images = np.array(images)
return Bunch(data=flat_data,
target=target,
target_names=categories,
images=images,
DESCR=descr)
image_dataset = load_image_files(r'E:\Classification\images')
X_train, X_test, y_train, y_test = train_test_split(
image_dataset.data, image_dataset.target, test_size=0.3,random_state=109)
param_grid = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
]
svc = svm.SVC()
clf = GridSearchCV(svc, param_grid)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(y_pred)
print("Classification report for - \n{}:\n{}\n".format(
clf, metrics.classification_report(y_test, y_pred)))