forked from bendangnuksung/mrcnn_serving_ready
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
67 lines (62 loc) · 2.67 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
class mask_config():
def __init__(self, NUMBER_OF_CLASSES):
self.NAME = "tags"
self.IMAGES_PER_GPU = 2
self.NUM_CLASSES = 1 + NUMBER_OF_CLASSES # Background + tags
self.STEPS_PER_EPOCH = 100
self.DETECTION_MIN_CONFIDENCE = 0.9
self.GPU_COUNT = 1
self.IMAGES_PER_GPU = 1
self.NAME = None # Override in sub-classes
self.GPU_COUNT = 1
self.IMAGES_PER_GPU = 1
self.STEPS_PER_EPOCH = 1000
self.VALIDATION_STEPS = 50
self.BACKBONE = "resnet101"
self.COMPUTE_BACKBONE_SHAPE = None
self.BACKBONE_STRIDES = [4, 8, 16, 32, 64]
self.FPN_CLASSIF_FC_LAYERS_SIZE = 1024
self.TOP_DOWN_PYRAMID_SIZE = 256
self.RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512)
self.RPN_ANCHOR_RATIOS = [0.5, 1, 2]
self.RPN_ANCHOR_STRIDE = 1
self.RPN_NMS_THRESHOLD = 0.7
self.RPN_TRAIN_ANCHORS_PER_IMAGE = 256
self.POST_NMS_ROIS_TRAINING = 2000
self.POST_NMS_ROIS_INFERENCE = 1000
self.USE_MINI_MASK = True
self.MINI_MASK_SHAPE = (56, 56) # (height, width) of the mini-mask
self.IMAGE_RESIZE_MODE = "square"
self.IMAGE_MIN_DIM = 800
self.IMAGE_MAX_DIM = 1024
self.IMAGE_MIN_SCALE = 0
self.MEAN_PIXEL = np.array([123.7, 116.8, 103.9])
self.TRAIN_ROIS_PER_IMAGE = 200
self.ROI_POSITIVE_RATIO = 0.33
self.POOL_SIZE = 7
self.MASK_POOL_SIZE = 14
self.MASK_SHAPE = [28, 28]
self.MAX_GT_INSTANCES = 100
self.RPN_BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2])
self.BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2])
self.DETECTION_MAX_INSTANCES = 100
self.DETECTION_MIN_CONFIDENCE = 0.7
self.DETECTION_NMS_THRESHOLD = 0.3
self.LEARNING_RATE = 0.001
self.LEARNING_MOMENTUM = 0.9
self.WEIGHT_DECAY = 0.0001
self.LOSS_WEIGHTS = {"rpn_class_loss": 1., "rpn_bbox_loss": 1., "mrcnn_class_loss": 1., "mrcnn_bbox_loss": 1.,
"mrcnn_mask_loss": 1.}
self.USE_RPN_ROIS = True
self.TRAIN_BN = False # Defaulting to False since batch size is often small
self.GRADIENT_CLIP_NORM = 5.0
self.BATCH_SIZE = self.IMAGES_PER_GPU * self.GPU_COUNT
# Input image size
if self.IMAGE_RESIZE_MODE == "crop":
self.IMAGE_SHAPE = np.array([self.IMAGE_MIN_DIM, self.IMAGE_MIN_DIM, 3])
else:
self.IMAGE_SHAPE = np.array([self.IMAGE_MAX_DIM, self.IMAGE_MAX_DIM, 3])
# Image meta data length
# See compose_image_meta() for details
self.IMAGE_META_SIZE = 1 + 3 + 3 + 4 + 1 + self.NUM_CLASSES