forked from tanluren/yolov3-channel-and-layer-pruning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layer_channel_prune.py
331 lines (215 loc) · 12.1 KB
/
layer_channel_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from models import *
from utils.utils import *
import numpy as np
from copy import deepcopy
from test import test
from terminaltables import AsciiTable
import time
from utils.prune_utils import *
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='*.data file path')
parser.add_argument('--weights', type=str, default='weights/last.pt', help='sparse model weights')
parser.add_argument('--shortcuts', type=int, default=8, help='how many shortcut layers will be pruned,\
pruning one shortcut will also prune two CBL,yolov3 has 23 shortcuts')
parser.add_argument('--global_percent', type=float, default=0.6, help='global channel prune percent')
parser.add_argument('--layer_keep', type=float, default=0.01, help='channel keep percent per layer')
parser.add_argument('--img_size', type=int, default=416, help='inference size (pixels)')
opt = parser.parse_args()
print(opt)
img_size = opt.img_size
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Darknet(opt.cfg, (img_size, img_size)).to(device)
if opt.weights.endswith(".pt"):
model.load_state_dict(torch.load(opt.weights, map_location=device)['model'])
else:
_ = load_darknet_weights(model, opt.weights)
print('\nloaded weights from ',opt.weights)
eval_model = lambda model:test(model=model, cfg=opt.cfg, data=opt.data, batch_size=16, img_size=img_size)
obtain_num_parameters = lambda model:sum([param.nelement() for param in model.parameters()])
print("\nlet's test the original model first:")
with torch.no_grad():
origin_model_metric = eval_model(model)
origin_nparameters = obtain_num_parameters(model)
##############################################################
#先剪通道
print("we will prune the channels first")
CBL_idx, Conv_idx, prune_idx, _, _= parse_module_defs2(model.module_defs)
bn_weights = gather_bn_weights(model.module_list, prune_idx)
sorted_bn = torch.sort(bn_weights)[0]
sorted_bn, sorted_index = torch.sort(bn_weights)
thresh_index = int(len(bn_weights) * opt.global_percent)
thresh = sorted_bn[thresh_index].cuda()
print(f'Global Threshold should be less than {thresh:.4f}.')
#%%
def obtain_filters_mask(model, thre, CBL_idx, prune_idx):
pruned = 0
total = 0
num_filters = []
filters_mask = []
for idx in CBL_idx:
bn_module = model.module_list[idx][1]
if idx in prune_idx:
weight_copy = bn_module.weight.data.abs().clone()
channels = weight_copy.shape[0] #
min_channel_num = int(channels * opt.layer_keep) if int(channels * opt.layer_keep) > 0 else 1
mask = weight_copy.gt(thresh).float()
if int(torch.sum(mask)) < min_channel_num:
_, sorted_index_weights = torch.sort(weight_copy,descending=True)
mask[sorted_index_weights[:min_channel_num]]=1.
remain = int(mask.sum())
pruned = pruned + mask.shape[0] - remain
print(f'layer index: {idx:>3d} \t total channel: {mask.shape[0]:>4d} \t '
f'remaining channel: {remain:>4d}')
else:
mask = torch.ones(bn_module.weight.data.shape)
remain = mask.shape[0]
total += mask.shape[0]
num_filters.append(remain)
filters_mask.append(mask.clone())
prune_ratio = pruned / total
print(f'Prune channels: {pruned}\tPrune ratio: {prune_ratio:.3f}')
return num_filters, filters_mask
num_filters, filters_mask = obtain_filters_mask(model, thresh, CBL_idx, prune_idx)
CBLidx2mask = {idx: mask for idx, mask in zip(CBL_idx, filters_mask)}
CBLidx2filters = {idx: filters for idx, filters in zip(CBL_idx, num_filters)}
for i in model.module_defs:
if i['type'] == 'shortcut':
i['is_access'] = False
print('merge the mask of layers connected to shortcut!')
merge_mask(model, CBLidx2mask, CBLidx2filters)
def prune_and_eval(model, CBL_idx, CBLidx2mask):
model_copy = deepcopy(model)
for idx in CBL_idx:
bn_module = model_copy.module_list[idx][1]
mask = CBLidx2mask[idx].cuda()
bn_module.weight.data.mul_(mask)
with torch.no_grad():
mAP = eval_model(model_copy)[0][2]
print(f'mask the gamma as zero, mAP of the model is {mAP:.4f}')
prune_and_eval(model, CBL_idx, CBLidx2mask)
for i in CBLidx2mask:
CBLidx2mask[i] = CBLidx2mask[i].clone().cpu().numpy()
pruned_model = prune_model_keep_size2(model, prune_idx, CBL_idx, CBLidx2mask)
print("\nnow prune the model but keep size,(actually add offset of BN beta to following layers), let's see how the mAP goes")
with torch.no_grad():
eval_model(pruned_model)
for i in model.module_defs:
if i['type'] == 'shortcut':
i.pop('is_access')
compact_module_defs = deepcopy(model.module_defs)
for idx in CBL_idx:
assert compact_module_defs[idx]['type'] == 'convolutional'
compact_module_defs[idx]['filters'] = str(CBLidx2filters[idx])
compact_model1 = Darknet([model.hyperparams.copy()] + compact_module_defs, (img_size, img_size)).to(device)
compact_nparameters1 = obtain_num_parameters(compact_model1)
init_weights_from_loose_model(compact_model1, pruned_model, CBL_idx, Conv_idx, CBLidx2mask)
print('testing the channel pruned model...')
with torch.no_grad():
compact_model_metric1 = eval_model(compact_model1)
#########################################################
#再剪层
print('\nnow we prune shortcut layers and corresponding CBLs')
CBL_idx, Conv_idx, shortcut_idx = parse_module_defs4(compact_model1.module_defs)
print('all shortcut_idx:', [i + 1 for i in shortcut_idx])
bn_weights = gather_bn_weights(compact_model1.module_list, shortcut_idx)
sorted_bn = torch.sort(bn_weights)[0]
# highest_thre = torch.zeros(len(shortcut_idx))
# for i, idx in enumerate(shortcut_idx):
# highest_thre[i] = compact_model1.module_list[idx][1].weight.data.abs().max().clone()
# _, sorted_index_thre = torch.sort(highest_thre)
#这里更改了选层策略,由最大值排序改为均值排序,均值一般表现要稍好,但不是绝对,可以自己切换尝试;前面注释的四行为原策略。
bn_mean = torch.zeros(len(shortcut_idx))
for i, idx in enumerate(shortcut_idx):
bn_mean[i] = compact_model1.module_list[idx][1].weight.data.abs().mean().clone()
_, sorted_index_thre = torch.sort(bn_mean)
prune_shortcuts = torch.tensor(shortcut_idx)[[sorted_index_thre[:opt.shortcuts]]]
prune_shortcuts = [int(x) for x in prune_shortcuts]
index_all = list(range(len(compact_model1.module_defs)))
index_prune = []
for idx in prune_shortcuts:
index_prune.extend([idx - 1, idx, idx + 1])
index_remain = [idx for idx in index_all if idx not in index_prune]
print('These shortcut layers and corresponding CBL will be pruned :', index_prune)
def prune_and_eval2(model, prune_shortcuts=[]):
model_copy = deepcopy(model)
for idx in prune_shortcuts:
for i in [idx, idx-1]:
bn_module = model_copy.module_list[i][1]
mask = torch.zeros(bn_module.weight.data.shape[0]).cuda()
bn_module.weight.data.mul_(mask)
with torch.no_grad():
mAP = eval_model(model_copy)[0][2]
print(f'simply mask the BN Gama of to_be_pruned CBL as zero, now the mAP is {mAP:.4f}')
prune_and_eval2(compact_model1, prune_shortcuts)
#%%
def obtain_filters_mask2(model, CBL_idx, prune_shortcuts):
filters_mask = []
for idx in CBL_idx:
bn_module = model.module_list[idx][1]
mask = np.ones(bn_module.weight.data.shape[0], dtype='float32')
filters_mask.append(mask.copy())
CBLidx2mask = {idx: mask for idx, mask in zip(CBL_idx, filters_mask)}
for idx in prune_shortcuts:
for i in [idx, idx - 1]:
bn_module = model.module_list[i][1]
mask = np.zeros(bn_module.weight.data.shape[0], dtype='float32')
CBLidx2mask[i] = mask.copy()
return CBLidx2mask
CBLidx2mask = obtain_filters_mask2(compact_model1, CBL_idx, prune_shortcuts)
pruned_model = prune_model_keep_size2(compact_model1, CBL_idx, CBL_idx, CBLidx2mask)
with torch.no_grad():
mAP = eval_model(pruned_model)[0][2]
print("after transfering the offset of pruned CBL's activation, map is {}".format(mAP))
compact_module_defs = deepcopy(compact_model1.module_defs)
for module_def in compact_module_defs:
if module_def['type'] == 'route':
from_layers = [int(s) for s in module_def['layers'].split(',')]
if len(from_layers) == 2:
count = 0
for i in index_prune:
if i <= from_layers[1]:
count += 1
from_layers[1] = from_layers[1] - count
from_layers = ', '.join([str(s) for s in from_layers])
module_def['layers'] = from_layers
compact_module_defs = [compact_module_defs[i] for i in index_remain]
compact_model2 = Darknet([compact_model1.hyperparams.copy()] + compact_module_defs, (img_size, img_size)).to(device)
for i, index in enumerate(index_remain):
compact_model2.module_list[i] = pruned_model.module_list[index]
compact_nparameters2 = obtain_num_parameters(compact_model2)
print('testing the final model')
with torch.no_grad():
compact_model_metric2 = eval_model(compact_model2)
################################################################
#剪枝完毕,测试速度
random_input = torch.rand((1, 3, img_size, img_size)).to(device)
def obtain_avg_forward_time(input, model, repeat=200):
model.eval()
start = time.time()
with torch.no_grad():
for i in range(repeat):
output = model(input)
avg_infer_time = (time.time() - start) / repeat
return avg_infer_time, output
print('testing inference time...')
pruned_forward_time, output = obtain_avg_forward_time(random_input, model)
compact_forward_time1, compact_output1 = obtain_avg_forward_time(random_input, compact_model1)
compact_forward_time2, compact_output2 = obtain_avg_forward_time(random_input, compact_model2)
metric_table = [
["Metric", "Before", "After prune channels", "After prune layers(final)"],
["mAP", f'{origin_model_metric[0][2]:.6f}', f'{compact_model_metric1[0][2]:.6f}', f'{compact_model_metric2[0][2]:.6f}'],
["Parameters", f"{origin_nparameters}", f"{compact_nparameters1}", f"{compact_nparameters2}"],
["Inference", f'{pruned_forward_time:.4f}', f'{compact_forward_time1:.4f}', f'{compact_forward_time2:.4f}']
]
print(AsciiTable(metric_table).table)
pruned_cfg_name = opt.cfg.replace('/', f'/prune_{opt.global_percent}_keep_{opt.layer_keep}_{opt.shortcuts}_shortcut_')
pruned_cfg_file = write_cfg(pruned_cfg_name, [model.hyperparams.copy()] + compact_module_defs)
print(f'Config file has been saved: {pruned_cfg_file}')
compact_model_name = opt.weights.replace('/', f'/prune_{opt.global_percent}_keep_{opt.layer_keep}_{opt.shortcuts}_shortcut_')
if compact_model_name.endswith('.pt'):
compact_model_name = compact_model_name.replace('.pt', '.weights')
save_weights(compact_model2, path=compact_model_name)
print(f'Compact model has been saved: {compact_model_name}')