-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathprocess_all.py
executable file
·184 lines (148 loc) · 6.36 KB
/
process_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3
from os import path, makedirs, listdir
from shutil import move
import traceback
from spacepy import pycdf
import numpy as np
import h5py
from subprocess import call
from tempfile import TemporaryDirectory
from tqdm import tqdm
from metadata import load_h36m_metadata
metadata = load_h36m_metadata()
# Subjects to include when preprocessing
included_subjects = {
'S1': 1,
'S5': 5,
'S6': 6,
'S7': 7,
'S8': 8,
'S9': 9,
'S11': 11,
}
# Rather than include every frame from every video, we can instead wait for the pose to change
# significantly before storing a new example.
def select_frame_indices_to_include(subject, poses_3d_univ):
# To process every single frame, uncomment the following line:
# return np.arange(0, len(poses_3d_univ))
# Take every 64th frame for the protocol #2 test subjects
# (see the "Compositional Human Pose Regression" paper)
if subject == 'S9' or subject == 'S11':
return np.arange(0, len(poses_3d_univ), 64)
# Take only frames where movement has occurred for the protocol #2 train subjects
frame_indices = []
prev_joints3d = None
threshold = 40 ** 2 # Skip frames until at least one joint has moved by 40mm
for i, joints3d in enumerate(poses_3d_univ):
if prev_joints3d is not None:
max_move = ((joints3d - prev_joints3d) ** 2).sum(axis=-1).max()
if max_move < threshold:
continue
prev_joints3d = joints3d
frame_indices.append(i)
return np.array(frame_indices)
def infer_camera_intrinsics(points2d, points3d):
"""Infer camera instrinsics from 2D<->3D point correspondences."""
pose2d = points2d.reshape(-1, 2)
pose3d = points3d.reshape(-1, 3)
x3d = np.stack([pose3d[:, 0], pose3d[:, 2]], axis=-1)
x2d = (pose2d[:, 0] * pose3d[:, 2])
alpha_x, x_0 = list(np.linalg.lstsq(x3d, x2d, rcond=-1)[0].flatten())
y3d = np.stack([pose3d[:, 1], pose3d[:, 2]], axis=-1)
y2d = (pose2d[:, 1] * pose3d[:, 2])
alpha_y, y_0 = list(np.linalg.lstsq(y3d, y2d, rcond=-1)[0].flatten())
return np.array([alpha_x, x_0, alpha_y, y_0])
def process_view(out_dir, subject, action, subaction, camera):
subj_dir = path.join('extracted', subject)
base_filename = metadata.get_base_filename(subject, action, subaction, camera)
# Load joint position annotations
with pycdf.CDF(path.join(subj_dir, 'Poses_D2_Positions', base_filename + '.cdf')) as cdf:
poses_2d = np.array(cdf['Pose'])
poses_2d = poses_2d.reshape(poses_2d.shape[1], 32, 2)
with pycdf.CDF(path.join(subj_dir, 'Poses_D3_Positions_mono_universal', base_filename + '.cdf')) as cdf:
poses_3d_univ = np.array(cdf['Pose'])
poses_3d_univ = poses_3d_univ.reshape(poses_3d_univ.shape[1], 32, 3)
with pycdf.CDF(path.join(subj_dir, 'Poses_D3_Positions_mono', base_filename + '.cdf')) as cdf:
poses_3d = np.array(cdf['Pose'])
poses_3d = poses_3d.reshape(poses_3d.shape[1], 32, 3)
# Infer camera intrinsics
camera_int = infer_camera_intrinsics(poses_2d, poses_3d)
camera_int_univ = infer_camera_intrinsics(poses_2d, poses_3d_univ)
frame_indices = select_frame_indices_to_include(subject, poses_3d_univ)
frames = frame_indices + 1
video_file = path.join(subj_dir, 'Videos', base_filename + '.mp4')
frames_dir = path.join(out_dir, 'imageSequence', camera)
makedirs(frames_dir, exist_ok=True)
# Check to see whether the frame images have already been extracted previously
existing_files = {f for f in listdir(frames_dir)}
frames_are_extracted = True
for i in frames:
filename = 'img_%06d.jpg' % i
if filename not in existing_files:
frames_are_extracted = False
break
if not frames_are_extracted:
with TemporaryDirectory() as tmp_dir:
# Use ffmpeg to extract frames into a temporary directory
call([
'ffmpeg',
'-nostats', '-loglevel', 'error',
'-i', video_file,
'-qscale:v', '3',
path.join(tmp_dir, 'img_%06d.jpg')
])
# Move included frame images into the output directory
for i in frames:
filename = 'img_%06d.jpg' % i
move(
path.join(tmp_dir, filename),
path.join(frames_dir, filename)
)
return {
'pose/2d': poses_2d[frame_indices],
'pose/3d-univ': poses_3d_univ[frame_indices],
'pose/3d': poses_3d[frame_indices],
'intrinsics/' + camera: camera_int,
'intrinsics-univ/' + camera: camera_int_univ,
'frame': frames,
'camera': np.full(frames.shape, int(camera)),
'subject': np.full(frames.shape, int(included_subjects[subject])),
'action': np.full(frames.shape, int(action)),
'subaction': np.full(frames.shape, int(subaction)),
}
def process_subaction(subject, action, subaction):
datasets = {}
out_dir = path.join('processed', subject, metadata.action_names[action] + '-' + subaction)
makedirs(out_dir, exist_ok=True)
for camera in tqdm(metadata.camera_ids, ascii=True, leave=False):
try:
annots = process_view(out_dir, subject, action, subaction, camera)
except:
tqdm.write('!!! Error processing sequence, skipping: ' + \
repr((subject, action, subaction, camera)))
tqdm.write(traceback.format_exc())
continue
for k, v in annots.items():
if k in datasets:
datasets[k].append(v)
else:
datasets[k] = [v]
if len(datasets) == 0:
return
datasets = {k: np.concatenate(v) for k, v in datasets.items()}
with h5py.File(path.join(out_dir, 'annot.h5'), 'w') as f:
for name, data in datasets.items():
f.create_dataset(name, data=data)
def process_all():
sequence_mappings = metadata.sequence_mappings
subactions = []
for subject in included_subjects.keys():
subactions += [
(subject, action, subaction)
for action, subaction in sequence_mappings[subject].keys()
if int(action) > 1 # Exclude '_ALL'
]
for subject, action, subaction in tqdm(subactions, ascii=True, leave=False):
process_subaction(subject, action, subaction)
if __name__ == '__main__':
process_all()