forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallel.cpp
293 lines (241 loc) · 9.27 KB
/
parallel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#include <gtest/gtest.h>
#include <torch/csrc/autograd/functions/comm.h>
#include <torch/nn/module.h>
#include <torch/nn/modules/conv.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/parallel/data_parallel.h>
#include <torch/nn/pimpl.h>
#include <torch/optim/sgd.h>
#include <torch/types.h>
#include <torch/utils.h>
#include <test/cpp/api/support.h>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
using namespace torch::autograd;
using namespace torch::nn;
struct ParallelTest : torch::test::SeedingFixture {};
TEST_F(ParallelTest, DifferentiableScatter_MultiCUDA) {
Scatter scatter(
{torch::Device(torch::kCUDA, 0), torch::Device(torch::kCUDA, 1)});
auto input = torch::ones(10, torch::requires_grad(true));
auto output = scatter.apply({input});
ASSERT_EQ(output.size(), 2);
ASSERT_EQ(output[0].size(0), 5);
ASSERT_EQ(output[1].size(0), 5);
ASSERT_TRUE(torch::cat({output[0].to(torch::kCPU), output[1].to(torch::kCPU)})
.allclose(input));
torch::Tensor sum = output[0].to({torch::kCUDA, 1}) + output[1];
sum.backward(torch::ones_like(sum));
ASSERT_TRUE(input.grad().defined());
ASSERT_TRUE(input.grad().device().is_cpu());
ASSERT_EQ(input.grad().sum().item<int32_t>(), 10);
}
TEST_F(ParallelTest, DifferentiableGather_MultiCUDA) {
Gather gather(torch::Device(torch::kCUDA, 1));
auto a = torch::ones(5, torch::requires_grad(true).device(torch::kCUDA, 0));
auto b = torch::ones(5, torch::requires_grad(true).device(torch::kCUDA, 1));
auto outputs = gather.apply({a, b});
ASSERT_EQ(outputs.size(), 1);
torch::Tensor output = outputs.front();
ASSERT_EQ(output.size(0), 10);
ASSERT_EQ(output.device(), torch::Device(torch::kCUDA, 1));
auto chunks = output.chunk(2);
ASSERT_TRUE(chunks[0].to({torch::kCUDA, 0}).allclose(a));
ASSERT_TRUE(chunks[1].allclose(b));
output.backward(torch::ones_like(output));
ASSERT_TRUE(a.grad().defined());
ASSERT_EQ(a.grad().device(), torch::Device(torch::kCUDA, 0));
ASSERT_EQ(a.grad().sum().item<int32_t>(), 5);
ASSERT_TRUE(b.grad().defined());
ASSERT_EQ(b.grad().device(), torch::Device(torch::kCUDA, 1));
ASSERT_EQ(b.grad().sum().item<int32_t>(), 5);
}
TEST_F(ParallelTest, Replicate_MultiCUDA) {
Linear linear(3, 4);
auto replicas = parallel::replicate(
linear, {torch::Device(torch::kCUDA, 0), torch::Device(torch::kCUDA, 1)});
ASSERT_EQ(replicas.size(), 2);
auto original_parameters = linear->parameters();
auto replica1_parameters = replicas[0]->parameters();
for (auto& parameter : replica1_parameters) {
ASSERT_EQ(parameter.device(), torch::Device(torch::kCUDA, 0));
}
replicas[0]->to(torch::kCPU);
ASSERT_EQ(replica1_parameters.size(), original_parameters.size());
for (size_t i = 0; i < original_parameters.size(); ++i) {
ASSERT_TRUE(replica1_parameters[i].allclose(original_parameters[i]));
ASSERT_TRUE(
replica1_parameters[i].data_ptr<float>() !=
original_parameters[i].data_ptr<float>());
}
auto replica2_parameters = replicas[1]->parameters();
for (auto& parameter : replica2_parameters) {
ASSERT_EQ(parameter.device(), torch::Device(torch::kCUDA, 1));
}
replicas[1]->to(torch::kCPU);
ASSERT_EQ(replica2_parameters.size(), original_parameters.size());
for (size_t i = 0; i < original_parameters.size(); ++i) {
ASSERT_TRUE(replica2_parameters[i].allclose(original_parameters[i]));
ASSERT_TRUE(
replica2_parameters[i].data_ptr<float>() !=
original_parameters[i].data_ptr<float>());
}
}
TEST_F(ParallelTest, ParallelApply_MultiCUDA) {
Linear a(3, 4);
Linear b(std::dynamic_pointer_cast<LinearImpl>(a->clone()));
b->to({torch::kCUDA, 0});
Linear c(std::dynamic_pointer_cast<LinearImpl>(a->clone()));
c->to({torch::kCUDA, 1});
std::vector<Linear> modules = {a, b, c};
std::vector<torch::Tensor> inputs = {
torch::ones({2, 3}),
torch::ones({2, 3}, torch::device({torch::kCUDA, 0})),
torch::ones({2, 3}, torch::device({torch::kCUDA, 1}))};
auto outputs = parallel::parallel_apply(modules, inputs);
ASSERT_EQ(outputs.size(), 3);
ASSERT_TRUE(outputs[0].device().is_cpu());
ASSERT_EQ(outputs[1].device(), torch::Device(torch::kCUDA, 0));
ASSERT_TRUE(outputs[1].to(torch::kCPU).allclose(outputs[0]));
ASSERT_EQ(outputs[2].device(), torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(outputs[2].to(torch::kCPU).allclose(outputs[0]));
}
TEST_F(ParallelTest, ParallelApplyWithDifferentOutputDevice_MultiCUDA) {
struct M : torch::nn::Module {
torch::Tensor forward(torch::Tensor input) {
return torch::ones(5, torch::kInt32);
}
};
std::vector<std::shared_ptr<M>> modules = {
std::make_shared<M>(), std::make_shared<M>(), std::make_shared<M>()};
std::vector<torch::Tensor> inputs = {
torch::empty({}), torch::empty({}), torch::empty({})};
std::vector<torch::Device> devices = {
{torch::kCUDA, 1}, {torch::kCUDA, 0}, {torch::kCPU}};
auto outputs = parallel::parallel_apply(modules, inputs, devices);
ASSERT_EQ(outputs.size(), 3);
ASSERT_TRUE(outputs[0].device().is_cuda());
ASSERT_EQ(outputs[0].device(), torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(outputs[1].device().is_cuda());
ASSERT_EQ(outputs[1].device(), torch::Device(torch::kCUDA, 0));
ASSERT_TRUE(outputs[2].device().is_cpu());
}
TEST_F(ParallelTest, ParallelApplyRethrowsException_MultiCUDA) {
struct M : torch::nn::Cloneable<M> {
void reset() override {}
torch::Tensor forward(torch::Tensor input) {
throw std::runtime_error("Badness!");
}
};
auto m = std::make_shared<M>();
auto input = torch::ones({10, 3});
ASSERT_THROWS_WITH(parallel::data_parallel(m, input), "Badness!");
}
TEST_F(
ParallelTest,
DataParallelPlacesTheOutputOnTheRequestedDevice_MultiCUDA) {
struct M : torch::nn::Cloneable<M> {
void reset() override {}
torch::Tensor forward(torch::Tensor input) {
// The returned tensor should be on the output device.
return torch::ones(3);
}
};
auto m = std::make_shared<M>();
auto input = torch::ones({10, 3});
{
auto output = parallel::data_parallel(
m,
input,
/*devices=*/torch::nullopt,
/*output_device=*/torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(output.defined());
ASSERT_TRUE(output.device().is_cuda());
ASSERT_EQ(output.device().index(), 1);
}
{
// Verify for the single-device case (where we don't scatter/gather).
auto output = parallel::data_parallel(
m,
input,
/*devices=*/std::vector<torch::Device>{torch::Device(torch::kCUDA, 0)},
/*output_device=*/torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(output.defined());
ASSERT_TRUE(output.device().is_cuda());
ASSERT_EQ(output.device().index(), 1);
}
}
TEST_F(ParallelTest, DataParallelUsesAllAvailableCUDADevices_CUDA) {
struct M : torch::nn::Cloneable<M> {
void reset() override {}
torch::Tensor forward(torch::Tensor input) {
return torch::tensor({input.device().index()});
}
};
auto m = std::make_shared<M>();
auto input = torch::ones({10, 3});
auto output = parallel::data_parallel(m, input);
const auto device_count = torch::cuda::device_count();
ASSERT_EQ(output.numel(), device_count);
for (size_t i = 0; i < device_count; ++i) {
ASSERT_EQ(output[i].item<int32_t>(), i);
}
}
TEST_F(ParallelTest, DataParallelNumericalEquivalence_MultiCUDA) {
struct M : torch::nn::Cloneable<M> {
M() {
reset();
}
void reset() override {
conv = register_module("conv",
torch::nn::Conv2d(torch::nn::Conv2dOptions(2, 2, /*kernel_size=*/2)));
fc = register_module("fc", torch::nn::Linear(8, 2));
}
torch::Tensor forward(torch::Tensor x) {
x = conv->forward(x);
x = torch::relu(x);
x = x.view({-1, 8});
x = fc->forward(x);
return torch::log_softmax(x, /*dim=*/1);
}
torch::nn::Conv2d conv{nullptr};
torch::nn::Linear fc{nullptr};
};
// prepare modules and inputs
auto input = torch::ones({16, 2, 3, 3});
auto input_dp = torch::ones({16, 2, 3, 3});
auto model = std::make_shared<M>();
auto model_dp = std::dynamic_pointer_cast<M>(model->clone());
// run 3 training iterations
for (int i = 0; i < 3; ++i) {
input += i;
input_dp += i;
// non-prallel training
torch::optim::SGD optim(
model->parameters(), torch::optim::SGDOptions(0.1));
auto output = model->forward(input);
auto loss = torch::mse_loss(output, torch::zeros_like(output));
loss.backward();
optim.step();
// data-parallel training
torch::optim::SGD optim_dp(
model_dp->parameters(), torch::optim::SGDOptions(0.1));
auto output_dp = parallel::data_parallel(model_dp, input_dp);
auto loss_dp = torch::mse_loss(output_dp, torch::zeros_like(output_dp));
loss_dp.backward();
optim_dp.step();
// make sure that weights are the same
model->to(torch::kCPU);
model_dp->to(torch::kCPU);
auto params = model->parameters();
auto params_dp = model_dp->parameters();
ASSERT_EQ(params.size(), params_dp.size());
for (auto it = params.begin(), it_dp = params_dp.begin();
it != params.end() && it_dp != params.end();
++it, ++it_dp) {
ASSERT_TRUE(torch::allclose(*it, *it_dp));
}
}
}