-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjoint.py
156 lines (121 loc) · 4.42 KB
/
joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import math
from utils import to_radians, from_radians
from transformations import compose_matrix
def expand_angle(in_angle, order="xyz", initial_element=0):
"""
Given an array of 1-3 elements and an order like 'xy' 'z' or something,
return a tuple (theta_x, theta_y, theta_z)
in_angle and order should have same number of elements
Examples:
angle([1,2], "xz") -> (1, 0, 2)
angle([1,2,3], "yzx") -> (3, 1, 2)
"""
if len(in_angle) != len(order):
raise RuntimeError("Mismatch between number of elements passed in and order")
blank = [initial_element] * 3
index_map = {"x": 0, "y": 1, "z": 2}
for axis, val in zip(order, in_angle):
blank[index_map[axis]] = val
return blank
def compress_angle(in_angle, order="xyz"):
"""
Given a vector of length 3, extract the relevant vector components
"""
index_map = {"x": 0, "y": 1, "z": 2}
ret = np.array([0.0] * len(order))
for index, code in enumerate(order):
ret[index] = in_angle[index_map[code]]
return ret
class Joint:
def from_dict(dictionary):
"""
Meant to take in dictionaries formatted like cgikit does and return
a Joint object
"""
id_ = int(dictionary["id"][0])
name = dictionary["name"][0]
direction = np.array([float(i) for i in dictionary["direction"]])
axis_degrees = np.array([float(i) for i in dictionary["axis"][:-1]])
length = float(dictionary["length"][0])
theta = np.array([0, 0, 0])
parent = None
dofs = " ".join(dictionary["dof"]) if "dof" in dictionary else ""
dofs = dofs.replace("r", "").replace(" ", "")
limits = [None] * 3
if "limits" in dictionary:
zipped = dictionary["limits"]
for i, lim in enumerate(zipped):
zipped[i] = to_radians(lim)
# expand_angle is useful for more than just angles, but this is the
# only place it's used in generality so far so there's not much
# reason to rename it
limits = expand_angle(zipped, dofs, None)
return Joint(id_, name, direction, to_radians(axis_degrees),
length, dofs, parent, limits)
def __init__(self, id_, name, direction, axis, length, dofs, parent=None,
limits=[None] * 3):
self.id_ = id_
self.name = name
self.direction = direction
self.length = length
self.dofs = dofs
self.limits = limits
self._axis = [0, 0, 0]
self.axis_radians = axis
self._theta = [0, 0, 0]
self._parent = None
self.parent = parent
self.__update_ctrans()
self.__update_ttrans
def __update_ctrans(self):
self.ctrans = compose_matrix(angles=self.axis_radians,
translate=[0,0,0])
self.ctrans_inv = np.linalg.inv(self.ctrans)
def __update_ttrans(self):
self.ttrans = compose_matrix(translate=self.parent.offset)
self.ttrans_inv = np.linalg.inv(self.ttrans)
@property
def parent(self):
return self._parent
@parent.setter
def parent(self, new):
self._parent = new
if self.parent is not None:
self.__update_ttrans()
@property
def axis_degrees(self):
return from_radians(self._axis)
@axis_degrees.setter
def axis_degrees(self, new_axis):
self._axis = to_radians(new_axis)
self.__update_ctrans()
@property
def axis_radians(self):
return self._axis
@axis_radians.setter
def axis_radians(self, new):
self._axis = new
self.__update_ctrans()
@property
def theta_degrees(self):
return from_radians(self._theta)
@theta_degrees.setter
def theta_degrees(self, new_theta):
self._theta = to_radians(new_theta)
@property
def theta_radians(self):
return self._theta
@theta_radians.setter
def theta_radians(self, new):
self._theta = new
@property
def offset(self):
return self.length * self.direction
@property
def local_transform(self):
return np.matmul(self.ttrans,
np.matmul(self.ctrans,
np.matmul(compose_matrix(angles=
self.theta_radians),
self.ctrans_inv)))