-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathkostis_makeTable_v2.m
334 lines (268 loc) · 19.3 KB
/
kostis_makeTable_v2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
function kostis_makeTable_v2
% Code to fit the history-dependent drift diffusion models as described in
% Urai AE, de Gee JW, Tsetsos K, Donner TH (2019) Choice history biases subsequent evidence accumulation. eLife, in press.
%
% MIT License
% Copyright (c) Anne Urai, 2019
close all; clc;
global mypath
kostisPath = sprintf('%s/Anke_MEG_transition/KostisFits', mypath);
% GRAB MOTION ENERGY TO DETERMINE NR OF TRIALS USED FOR THE FIT
load(sprintf('%s/motionEnergyData_AnkeMEG.mat', kostisPath));
ss=unique(data.behavior.subj_idx);
for s=1:length(ss);
indx=find(data.behavior.subj_idx==ss(s) & data.behavior.RT>0.25 & data.behavior.coherence~=81 & ~isnan(data.behavior.prevresp));
notrials(s)=length(indx);
end
% function for BIC computation - treating all subjects as a super subject
ll2bic = @(ll, k, n) repmat((2*sum(ll) + length(n)*k.*log(sum(n))), length(n), 1);
% also try AIC
% ll2aic = @(ll, p, n) repmat((2*sum(ll) + length(n)* p.*log(sum(n))), length(n), 1);
ll2aic = @(ll, k) repmat((2*k + 2*sum(ll)), length(ll), 1);
% ========================================== %
% 1. DDM values
% ========================================== %
% params: naive model
% params2: DC
% params3: starting
% params4: ramping 1-par
% params5: ramping 2-pars
% params6: DC+starting
% in all models the parameters are:
% column 1: boundary: multiply by 10
% column 2: scale controlling signal-to-noise (noise fixed at std=1):
% multiply by 60
% column 3: T0 expressed in seconds: multiply by 0.5 seconds
% column 4: drift-rate variability: multiply by 3
% column 5: starting point variability: multiply by 0.75. Parameter
% expresses % relative to threshold i.e. 0.75 means 75% of the value of the
% trheshold
% for params6: column 6: drift-criterion, column 7: starting point
% likelihoods for each subject
% rows are: 1-naive, 2-DC, 3-startint point
% 4-ramping with slope, 5-ramping with 2 params
% 6- both DC and starting point;
clearvars -except kostisPath notrials ll2bic ll2aic mypath alltables
load(sprintf('%s/allmodels.mat', kostisPath));
params_ddm = array2table([params ll2bic(outgf(:, 1), 5, notrials) ll2aic(outgf(:, 1), 5)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'bic', 'aic'});
params_ddm_dc = array2table([params2 ll2bic(outgf(:, 2), 6, notrials) ll2aic(outgf(:, 2), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'dcbias', 'bic', 'aic'});
params_ddm_sp = array2table([params3 ll2bic(outgf(:, 3), 6, notrials) ll2aic(outgf(:, 3), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'zbias', 'bic', 'aic'});
params_ddm_sp_dc = array2table([params6 ll2bic(outgf(:, 6), 7, notrials) ll2aic(outgf(:, 6), 7)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'dcbias', 'zbias', 'bic', 'aic'});
%column 6: in params2, params3, params4 is the biasing parameter.
% multiply by 1,1 and 5 respectively for those models.
params_ddm_rp = array2table([params4 ll2bic(outgf(:, 4), 6, notrials) ll2aic(outgf(:, 4), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'slope', 'bic', 'aic'});
%params_ddm_rp.slope = params_ddm_rp.slope * 5;
%for params5, column 6: slope (multiply by sign of offset), column 7: offset
params_ddm_rp2 = array2table([params5 ll2bic(outgf(:, 5), 7, notrials) ll2aic(outgf(:, 5), 7)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'slope', 'offset', 'bic', 'aic'});
params_ddm_rp2.slope = params_ddm_rp2.slope .* sign(params_ddm_rp2.offset);
params_ddm.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_vanilla_', x)), params_ddm.Properties.VariableNames, 'un', 0);
params_ddm_sp.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_z_', x)), params_ddm_sp.Properties.VariableNames, 'un', 0);
params_ddm_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_dc_', x)), params_ddm_dc.Properties.VariableNames, 'un', 0);
params_ddm_sp_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_dcz_', x)), params_ddm_sp_dc.Properties.VariableNames, 'un', 0);
params_ddm_rp.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_rp_', x)), params_ddm_rp.Properties.VariableNames, 'un', 0);
params_ddm_rp2.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_rp2_', x)), params_ddm_rp2.Properties.VariableNames, 'un', 0);
alltables{1} = cat(2, params_ddm, params_ddm_sp, params_ddm_dc, params_ddm_sp_dc, params_ddm_rp, params_ddm_rp2);
% ========================================== %
% RAMPING DDM
% ========================================== %
clearvars -except kostisPath notrials ll2bic ll2aic mypath alltables
load(sprintf('%s/D_allmodels.mat', kostisPath));
params_ddm = array2table([params ll2bic(outgf(:, 1), 5, notrials) ll2aic(outgf(:, 1), 5)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'bic', 'aic'});
params_ddm_dc = array2table([params2 ll2bic(outgf(:, 2), 6, notrials) ll2aic(outgf(:, 2), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'dcbias', 'bic', 'aic'});
%params_ddm_sp = array2table([params3 ll2bic(outgf(:, 3), 6, notrials)], 'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'zbias', 'bic'});
%params_ddm_sp_dc = array2table([params6 ll2bic(outgf(:, 6), 7, notrials)], 'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'dcbias', 'zbias', 'bic'});
%column 6: in params2, params3, params4 is the biasing parameter.
% multiply by 1,1 and 5 respectively for those models.
params_ddm_rp = array2table([params3 ll2bic(outgf(:, 3), 6, notrials) ll2aic(outgf(:, 3), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'slope', 'bic', 'aic'});
%params_ddm_rp.slope = params_ddm_rp.slope * 5;
%for params5, column 6: slope (multiply by sign of offset), column 7: offset
params_ddm_rp2 = array2table([params4 ll2bic(outgf(:, 4), 7, notrials) ll2aic(outgf(:, 4), 7)], ...
'variablenames', {'threshold', 'scale', 'T0', 'dv', 'bsp', 'slope', 'offset', 'bic', 'aic'});
params_ddm_rp2.slope = params_ddm_rp2.slope .* sign(params_ddm_rp2.offset);
params_ddm.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmD_vanilla_', x)), params_ddm.Properties.VariableNames, 'un', 0);
%params_ddm_sp.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_z_', x)), params_ddm_sp.Properties.VariableNames, 'un', 0);
params_ddm_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmD_dc_', x)), params_ddm_dc.Properties.VariableNames, 'un', 0);
%params_ddm_sp_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmK_dcz_', x)), params_ddm_sp_dc.Properties.VariableNames, 'un', 0);
params_ddm_rp.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmD_rp_', x)), params_ddm_rp.Properties.VariableNames, 'un', 0);
params_ddm_rp2.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmD_rp2_', x)), params_ddm_rp2.Properties.VariableNames, 'un', 0);
alltables{end+1} = cat(2, params_ddm, params_ddm_dc, params_ddm_rp, params_ddm_rp2);
% ========================================== %
% 2. DDM WITH collapsing bounds
% ========================================== %
% load DDMCol_allmodels.mat % collapsing DDM
% [a1,x1]=corr(kk(:,2),params2(:,end),'Type','Spearman');% drift-criterion
% [a2,x2]=corr(kk(:,2),params3(:,end),'Type','Spearman'); % starting point
% [a3a,x3a]=corr(kk(:,2),params4(:,end),'Type','Spearman');% starting point in hybrid
% [a3b,x3b]=corr(kk(:,2),params4(:,end-1),'Type','Spearman'); % drift criterion hybrid
clearvars -except kostisPath notrials ll2bic ll2aic mypath alltables
load(sprintf('%s/DDMCol_allmodels.mat', kostisPath));
% assume that the size of individual bound collapse (hyperbolic) is in the
% same column in the parameter matrices as the drift rate variability in
% the vanilla DDMs above?
params_ddm = array2table([params ll2bic(outgf(:, 1), 5, notrials) ll2aic(outgf(:, 1), 5)], ...
'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'bic', 'aic'});
params_ddm_dc = array2table([params2 ll2bic(outgf(:, 2), 6, notrials) ll2aic(outgf(:, 2), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'dcbias', 'bic', 'aic'});
params_ddm_sp = array2table([params3 ll2bic(outgf(:, 3), 6, notrials) ll2aic(outgf(:, 3), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'zbias', 'bic', 'aic'});
params_ddm_sp_dc = array2table([params4 ll2bic(outgf(:, 4), 7, notrials) ll2aic(outgf(:, 4), 7)], ...
'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'dcbias', 'zbias', 'bic', 'aic'});
params_ddm.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmColl_vanilla_', x)), params_ddm.Properties.VariableNames, 'un', 0);
params_ddm_sp.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmColl_z_', x)), params_ddm_sp.Properties.VariableNames, 'un', 0);
params_ddm_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmColl_dc_', x)), params_ddm_dc.Properties.VariableNames, 'un', 0);
params_ddm_sp_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmColl_dcz_', x)), params_ddm_sp_dc.Properties.VariableNames, 'un', 0);
alltables{end+1} = cat(2, params_ddm, params_ddm_sp, params_ddm_dc, params_ddm_sp_dc);
% ========================================== %
% 2b. DDM WITH collapsing bounds, from stimulus onset
% ========================================== %
% load DDMCol_allmodels.mat % collapsing DDM
% [a1,x1]=corr(kk(:,2),params2(:,end),'Type','Spearman');% drift-criterion
% [a2,x2]=corr(kk(:,2),params3(:,end),'Type','Spearman'); % starting point
% [a3a,x3a]=corr(kk(:,2),params4(:,end),'Type','Spearman');% starting point in hybrid
% [a3b,x3b]=corr(kk(:,2),params4(:,end-1),'Type','Spearman'); % drift criterion hybrid
clearvars -except kostisPath notrials ll2bic ll2aic mypath alltables
load(sprintf('%s/DynDDMCol_allmodels.mat', kostisPath));
% assume that the size of individual bound collapse (hyperbolic) is in the
% same column in the parameter matrices as the drift rate variability in
% the vanilla DDMs above?
% params_ddm = array2table([params ll2bic(outgf(:, 1), 5, notrials)], 'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'bic'});
params_ddm_dc = array2table([params2 ll2bic(outgf(:, 2), 6, notrials) ll2aic(outgf(:, 2), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'dcbias', 'bic', 'aic'});
params_ddm_sp = array2table([params3 ll2bic(outgf(:, 3), 6, notrials) ll2aic(outgf(:, 3), 6)], ...
'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'zbias', 'bic', 'aic'});
params_ddm_sp_dc = array2table([params4 ll2bic(outgf(:, 4), 7, notrials) ll2aic(outgf(:, 4), 7)], ...
'variablenames', {'threshold', 'scale', 'T0', 'boundcollapse', 'bsp', 'dcbias', 'zbias', 'bic', 'aic'});
% params_ddm.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmDColl_vanilla_', x)), params_ddm.Properties.VariableNames, 'un', 0);
params_ddm_sp.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmDColl_z_', x)), params_ddm_sp.Properties.VariableNames, 'un', 0);
params_ddm_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmDColl_dc_', x)), params_ddm_dc.Properties.VariableNames, 'un', 0);
params_ddm_sp_dc.Properties.VariableNames = cellfun((@(x) cat(2, 'ddmDColl_dcz_', x)), params_ddm_sp_dc.Properties.VariableNames, 'un', 0);
alltables{end+1} = cat(2, params_ddm_sp, params_ddm_dc, params_ddm_sp_dc);
% ========================================== %
% 3. then take the O-U values
% ========================================== %
% params: naive model
% params2: Inout bias
% params3: OU-asymmetry
% params4: starting point
% in all models the parameters are:
% column 1: boundary: multiply by 30
% column 2: scale controlling signal-to-noise (noise fixed at std=1):
% multiply by 100
% column 3: T0 expressed in seconds: multiply by 0.7 seconds
% column 4: OU parameter: multiply by 15
% column 5: starting point variability: multiply by 0.75. Parameter
% expresses % relative to threshold i.e. 0.75 means 75% of the value of the
% trheshold
clearvars -except kostisPath notrials ll2bic ll2aic mypath alltables
load(sprintf('%s/OUallmodels.mat', kostisPath));
params_ddm = array2table([params ll2bic(outgf(:, 1), 5, notrials) ll2aic(outgf(:, 1), 5)], ...
'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'bic', 'aic'});
params_ddm_input = array2table([params2 ll2bic(outgf(:, 2), 6, notrials) ll2aic(outgf(:, 2), 6)], ...
'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'inputbias', 'bic', 'aic'});
params_ddm_lambda = array2table([params3 ll2bic(outgf(:, 3), 6, notrials) ll2aic(outgf(:, 3), 6)], ...
'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'lambdabias', 'bic', 'aic'});
params_ddm_sp = array2table([params4 ll2bic(outgf(:, 4), 6, notrials) ll2aic(outgf(:, 4), 6)], ...
'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'spbias', 'bic', 'aic'});
% column 6: in params2, params3, params4 is the biasing parameter.
% multiply by 5,1 and 5 respectively for those models.
%params_ddm_input.inputbias = params_ddm_input.inputbias * 5;
%params_ddm_sp.spbias = params_ddm_sp.spbias * 5;
% put into one big table
params_ddm.Properties.VariableNames = cellfun((@(x) cat(2, 'ouK_vanilla_', x)), params_ddm.Properties.VariableNames, 'un', 0);
params_ddm_sp.Properties.VariableNames = cellfun((@(x) cat(2, 'ouK_sp_', x)), params_ddm_sp.Properties.VariableNames, 'un', 0);
params_ddm_input.Properties.VariableNames = cellfun((@(x) cat(2, 'ouK_input_', x)), params_ddm_input.Properties.VariableNames, 'un', 0);
params_ddm_lambda.Properties.VariableNames = cellfun((@(x) cat(2, 'ouK_lambda_', x)), params_ddm_lambda.Properties.VariableNames, 'un', 0);
alltables{end+1} = cat(2, params_ddm, params_ddm_sp, params_ddm_input, params_ddm_lambda);
% ========================================== %
% 4. O-U, accumulation during stimulus
% ========================================== %
% params: naive model
% params2: Inout bias
% params3: OU-asymmetry
% params4: starting point
% in all models the parameters are:
% column 1: boundary: multiply by 30
% column 2: scale controlling signal-to-noise (noise fixed at std=1):
% multiply by 100
% column 3: T0 expressed in seconds: multiply by 0.7 seconds
% column 4: OU parameter: multiply by 15
% column 5: starting point variability: multiply by 0.75. Parameter
% expresses % relative to threshold i.e. 0.75 means 75% of the value of the
% trheshold
clearvars -except kostisPath notrials ll2bic ll2aic mypath alltables
load(sprintf('%s/OUDallmodels.mat', kostisPath));
%params_ddm = array2table([params ll2bic(outgf(:, 1), 5, notrials)], 'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'bic'});
params_ddm_input = array2table([params2 ll2bic(outgf(:, 2), 6, notrials) ll2aic(outgf(:, 2), 6)], ...
'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'inputbias', 'bic', 'aic'});
params_ddm_lambda = array2table([params3 ll2bic(outgf(:, 3), 6, notrials) ll2aic(outgf(:, 3), 6)], ...
'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'lambdabias', 'bic', 'aic'});
params_ddm_sp = array2table([params4 ll2bic(outgf(:, 4), 6, notrials) ll2aic(outgf(:, 4), 6)], ...
'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'spbias', 'bic', 'aic'});
% column 6: in params2, params3, params4 is the biasing parameter.
% multiply by 5,1 and 5 respectively for those models.
%params_ddm_input.inputbias = params_ddm_input.inputbias * 5;
%params_ddm_sp.spbias = params_ddm_sp.spbias * 5;
% put into one big table
%params_ddm.Properties.VariableNames = cellfun((@(x) cat(2, 'ouD_vanilla_', x)), params_ddm.Properties.VariableNames, 'un', 0);
params_ddm_sp.Properties.VariableNames = cellfun((@(x) cat(2, 'ouD_sp_', x)), params_ddm_sp.Properties.VariableNames, 'un', 0);
params_ddm_input.Properties.VariableNames = cellfun((@(x) cat(2, 'ouD_input_', x)), params_ddm_input.Properties.VariableNames, 'un', 0);
params_ddm_lambda.Properties.VariableNames = cellfun((@(x) cat(2, 'ouD_lambda_', x)), params_ddm_lambda.Properties.VariableNames, 'un', 0);
alltables{end+1} = cat(2, params_ddm_sp, params_ddm_input, params_ddm_lambda);
% ========================================== %
% 4b. O-U Collapsing, accumulation during stimulus
% ========================================== %
clearvars -except kostisPath notrials ll2bic ll2aic mypath alltables
load(sprintf('%s/OUcollapse_allmodels.mat', kostisPath));
% params_ddm = array2table([params ll2bic(outgf(:, 1), 6, notrials)], 'variablenames', {'boundary', 'scale', 'T0', 'lambda', 'bsp', 'bic'});
params_ddm_input = array2table([params2 ll2bic(outgf(:, 2), 7, notrials) ll2aic(outgf(:, 2), 7)], ...
'variablenames', {'boundary', 'scale', 'T0', 'collapse', 'bsp', 'inputbias', 'lambda', 'bic', 'aic'});
params_ddm_lambda = array2table([params3 ll2bic(outgf(:, 3), 7, notrials) ll2aic(outgf(:, 3), 7)], ...
'variablenames', {'boundary', 'scale', 'T0', 'collapse', 'bsp', 'lambdabias', 'lambda','bic', 'aic'});
params_ddm_sp = array2table([params4 ll2bic(outgf(:, 4), 7, notrials) ll2aic(outgf(:, 4), 7)], ...
'variablenames', {'boundary', 'scale', 'T0', 'collapse', 'bsp', 'spbias', 'lambda', 'bic', 'aic'});
% column 6: in params2, params3, params4 is the biasing parameter.
% multiply by 5,1 and 5 respectively for those models.
params_ddm_input.inputbias = params_ddm_input.inputbias * 5;
params_ddm_sp.spbias = params_ddm_sp.spbias * 5;
% put into one big table
% params_ddm.Properties.VariableNames = cellfun((@(x) cat(2, 'ouDColl_vanilla_', x)), params_ddm.Properties.VariableNames, 'un', 0);
params_ddm_sp.Properties.VariableNames = cellfun((@(x) cat(2, 'ouDColl_sp_', x)), params_ddm_sp.Properties.VariableNames, 'un', 0);
params_ddm_input.Properties.VariableNames = cellfun((@(x) cat(2, 'ouDColl_input_', x)), params_ddm_input.Properties.VariableNames, 'un', 0);
params_ddm_lambda.Properties.VariableNames = cellfun((@(x) cat(2, 'ouDColl_lambda_', x)), params_ddm_lambda.Properties.VariableNames, 'un', 0);
alltables{end+1} = cat(2, params_ddm_sp, params_ddm_input, params_ddm_lambda);
% ========================================== %
% CONCATENATE ALL INTO A TABLE
% ========================================== %
% add repetition, computed from all of Anke's trials
load(sprintf('%s/history.mat', kostisPath));
kk(6, :) = []; % remove this subject
alltables{end}.repetitionK = kk(:, 2); % add to the big table
% load the main results file
results = readtable(sprintf('%s/summary/%s/allindividualresults.csv', mypath, 'Anke_MEG_transition'));
results = results(results.session == 0, :);
results = cat(2, results, alltables{:});
writetable(results, sprintf('%s/summary/%s/allindividualresults_kostis.csv', mypath, 'Anke_MEG_transition'));
% SAVE FOR FIGSHARE
writetable(cat(2, results(:, {'subjnr', 'repetition'}), alltables{:}), sprintf('%s/summary/visual_motion_2afc_fd_extendedfits.csv', mypath));
disp(sprintf('%s/summary/visual_motion_2afc_fd_extendedfits.csv', mypath));
% some plots
corrplot(results, {'repetitionK', 'ddmK_z_zbias', 'ddmK_dc_dcbias', 'ddmK_dcz_zbias', 'ddmK_dcz_dcbias'});
print(gcf, '-dpdf', '~/Data/serialHDDM/kostisData_overview_DDM.pdf');
close all;
corrplot(results, {'repetitionK', 'ddmK_rp_slope', 'ddmK_dc_dcbias', ...
'ddmK_rp2_slope', 'ddmK_rp2_offset'});
print(gcf, '-dpdf', '~/Data/serialHDDM/kostisData_overview_DDM_ramp.pdf');
close all;
corrplot(results, {'repetitionK', 'repetition'});
print(gcf, '-dpdf', '~/Data/serialHDDM/repetition_comparison.pdf');
end