-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtorch_thp.py
194 lines (152 loc) · 8.09 KB
/
torch_thp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import torch.nn as nn
from easy_tpp.model.torch_model.torch_baselayer import EncoderLayer, MultiHeadAttention, TimePositionalEncoding, ScaledSoftplus
from easy_tpp.model.torch_model.torch_basemodel import TorchBaseModel
class THP(TorchBaseModel):
"""Torch implementation of Transformer Hawkes Process, ICML 2020, https://arxiv.org/abs/2002.09291.
Note: Part of the code is collected from https://github.com/yangalan123/anhp-andtt/tree/master/thp.
"""
def __init__(self, model_config):
"""Initialize the model
Args:
model_config (EasyTPP.ModelConfig): config of model specs.
"""
super(THP, self).__init__(model_config)
self.d_model = model_config.hidden_size
self.d_time = model_config.time_emb_size
self.use_norm = model_config.use_ln
self.n_layers = model_config.num_layers
self.n_head = model_config.num_heads
self.dropout = model_config.dropout_rate
self.layer_temporal_encoding = TimePositionalEncoding(self.d_model, device=self.device)
self.factor_intensity_base = nn.Parameter(torch.empty([1, self.num_event_types], device=self.device))
self.factor_intensity_decay = nn.Parameter(torch.empty([1, self.num_event_types], device=self.device))
nn.init.xavier_normal_(self.factor_intensity_base)
nn.init.xavier_normal_(self.factor_intensity_decay)
# convert hidden vectors into event-type-sized vector
self.layer_intensity_hidden = nn.Linear(self.d_model, self.num_event_types)
self.softplus = ScaledSoftplus(self.num_event_types) # learnable mark-specific beta
# Add MLP layer
# Equation (5)
self.feed_forward = nn.Sequential(
nn.Linear(self.d_model, self.d_model * 2),
nn.ReLU(),
nn.Linear(self.d_model * 2, self.d_model)
)
self.stack_layers = nn.ModuleList(
[EncoderLayer(
self.d_model,
MultiHeadAttention(self.n_head, self.d_model, self.d_model, self.dropout,
output_linear=False),
use_residual=False,
feed_forward=self.feed_forward,
dropout=self.dropout
) for _ in range(self.n_layers)])
def forward(self, time_seqs, type_seqs, attention_mask):
"""Call the model
Args:
time_seqs (tensor): [batch_size, seq_len], timestamp seqs.
type_seqs (tensor): [batch_size, seq_len], event type seqs.
attention_mask (tensor): [batch_size, seq_len, hidden_size], attention masks.
Returns:
tensor: hidden states at event times.
"""
# [batch_size, seq_len, hidden_size]
tem_enc = self.layer_temporal_encoding(time_seqs)
enc_output = self.layer_type_emb(type_seqs)
# [batch_size, seq_len, hidden_size]
for enc_layer in self.stack_layers:
enc_output += tem_enc
enc_output = enc_layer(
enc_output,
mask=attention_mask)
return enc_output
def loglike_loss(self, batch):
"""Compute the loglike loss.
Args:
batch (tuple, list): batch input.
Returns:
tuple: loglike loss, num events.
"""
time_seqs, time_delta_seqs, type_seqs, batch_non_pad_mask, attention_mask = batch
# 1. compute event-loglik
# [batch_size, seq_len, hidden_size]
enc_out = self.forward(time_seqs[:, :-1], type_seqs[:, :-1], attention_mask[:, :-1, :-1])
# [batch_size, seq_len, num_event_types]
# update time decay based on Equation (6)
# [1, 1, num_event_types]
factor_intensity_decay = self.factor_intensity_decay[None, ...]
factor_intensity_base = self.factor_intensity_base[None, ...]
# update time decay based on Equation (6)
# [batch_size, seq_len, num_event_types]
intensity_states = factor_intensity_decay * time_delta_seqs[:, 1:, None] + self.layer_intensity_hidden(
enc_out) + factor_intensity_base
lambda_at_event = self.softplus(intensity_states)
# 2. compute non-event-loglik (using MC sampling to compute integral)
# 2.1 sample dtimes
# [batch_size, seq_len, num_sample]
sample_dtimes = self.make_dtime_loss_samples(time_delta_seqs[:, 1:])
# 2.2 compute intensities at sampled times
# [batch_size, num_times = max_len - 1, num_sample, event_num]
state_t_sample = self.compute_states_at_sample_times(event_states=enc_out,
sample_dtimes=sample_dtimes)
lambda_t_sample = self.softplus(state_t_sample)
event_ll, non_event_ll, num_events = self.compute_loglikelihood(lambda_at_event=lambda_at_event,
lambdas_loss_samples=lambda_t_sample,
time_delta_seq=time_delta_seqs[:, 1:],
seq_mask=batch_non_pad_mask[:, 1:],
type_seq=type_seqs[:, 1:])
# compute loss to minimize
loss = - (event_ll - non_event_ll).sum()
return loss, num_events
def compute_states_at_sample_times(self, event_states, sample_dtimes):
"""Compute the hidden states at sampled times.
Args:
event_states (tensor): [batch_size, seq_len, hidden_size].
sample_dtimes (tensor): [batch_size, seq_len, num_samples].
Returns:
tensor: hidden state at each sampled time.
"""
# [batch_size, seq_len, 1, hidden_size]
event_states = event_states[:, :, None, :]
# [batch_size, seq_len, num_samples, 1]
sample_dtimes = sample_dtimes[..., None]
# [1, 1, 1, num_event_types]
factor_intensity_decay = self.factor_intensity_decay[None, None, ...]
factor_intensity_base = self.factor_intensity_base[None, None, ...]
# update time decay based on Equation (6)
# [batch_size, seq_len, num_samples, num_event_types]
intensity_states = factor_intensity_decay * sample_dtimes + self.layer_intensity_hidden(
event_states) + factor_intensity_base
return intensity_states
def compute_intensities_at_sample_times(self,
time_seqs,
time_delta_seqs,
type_seqs,
sample_dtimes,
**kwargs):
"""Compute hidden states at sampled times.
Args:
time_seqs (tensor): [batch_size, seq_len], times seqs.
time_delta_seqs (tensor): [batch_size, seq_len], time delta seqs.
type_seqs (tensor): [batch_size, seq_len], event type seqs.
sample_dtimes (tensor): [batch_size, seq_len, num_samples], sampled inter-event timestamps.
Returns:
tensor: [batch_size, seq_len, num_samples, num_event_types], intensity at all sampled times.
"""
attention_mask = kwargs.get('attention_mask', None)
compute_last_step_only = kwargs.get('compute_last_step_only', False)
if attention_mask is None:
batch_size, seq_len = time_seqs.size()
attention_mask = torch.triu(torch.ones(seq_len, seq_len, device=self.device), diagonal=1).unsqueeze(0)
attention_mask = attention_mask.expand(batch_size, -1, -1).to(torch.bool)
# [batch_size, seq_len, num_samples]
enc_out = self.forward(time_seqs, type_seqs, attention_mask)
# [batch_size, seq_len, num_samples, hidden_size]
encoder_output = self.compute_states_at_sample_times(enc_out, sample_dtimes)
if compute_last_step_only:
lambdas = self.softplus(encoder_output[:, -1:, :, :])
else:
# [batch_size, seq_len, num_samples, num_event_types]
lambdas = self.softplus(encoder_output)
return lambdas