-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathlsmdc_dataloader.py
72 lines (63 loc) · 2.17 KB
/
lsmdc_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import torch as th
from torch.utils.data import Dataset
import pickle
import torch.nn.functional as F
import numpy as np
import re
import pandas as pd
from collections import defaultdict
from torch.utils.data.dataloader import default_collate
import random
class LSMDC_DataLoader(Dataset):
"""LSMDC dataset loader."""
def __init__(
self,
csv_path,
features_path,
we,
we_dim=300,
max_words=30,
subsample_csv=0,
):
"""
Args:
"""
self.data = pd.read_csv(csv_path, sep='\t', header=None)
if subsample_csv > 0:
self.data = self.data.sample(n=subsample_csv)
self.features = th.load(features_path)
self.we = we
self.we_dim = we_dim
self.max_words = max_words
def __len__(self):
return len(self.data)
def custom_collate(self, batch):
return default_collate(batch)
def _zero_pad_tensor(self, tensor, size):
if len(tensor) >= size:
return tensor[:size]
else:
zero = np.zeros((size - len(tensor), self.we_dim), dtype=np.float32)
return np.concatenate((tensor, zero), axis=0)
def _tokenize_text(self, sentence):
w = re.findall(r"[\w']+", str(sentence))
return w
def _words_to_we(self, words):
words = [word for word in words if word in self.we.vocab]
if words:
we = self._zero_pad_tensor(self.we[words], self.max_words)
return th.from_numpy(we)
else:
return th.zeros(self.max_words, self.we_dim)
def __getitem__(self, idx):
vid = self.data[0].values[idx]
sentence = self.data[5].values[idx]
feat_2d = F.normalize(self.features['2d'][vid].float(), dim=0)
feat_3d = F.normalize(self.features['3d'][vid].float(), dim=0)
video = th.cat((feat_2d, feat_3d))
caption = self._words_to_we(self._tokenize_text(sentence))
return {'video': video, 'text': caption, 'video_id': vid}