-
Notifications
You must be signed in to change notification settings - Fork 0
/
point.cpp
237 lines (191 loc) · 4.89 KB
/
point.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include <cmath>
#include "point.h"
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#endif
//==================================================================
//------------------------------------------------------------------
// Assign (set) dimension
//------------------------------------------------------------------
bool Point::operator==( const Point& Q)
{
if (dim() != Q.dim()) return FALSE_B;
for (int i = 0; i < dim() ; i++)
{
if ( this->myPoint[i] != Q.myPoint[i] ) {
return false;
}
}
return true;
}
bool Point::operator!=( const Point& Q)
{
return !(operator == (Q));
}
void Point::operator=(const Point& p)
{
err = p.err; // error indicator
for (int i = 0; i < dim() ; i++)
{
this->myPoint[i] = p.myPoint[i];
}
}
//------------------------------------------------------------------
// Point Vector Operations
//------------------------------------------------------------------
Point Point::operator+( const Point& v) // +ve translation
{
Point P(v.dim());
assert(this->dim() == v.dim());
for (int i = 0; i < dim() ; i++)
{
P[i] = this->myPoint[i] + v.myPoint[i];
}
return P;
}
Point Point::operator-( const Point& v) // -ve translation
{
Point P(v.dim());
assert(this->dim() == v.dim());
for (int i = 0; i < dim() ; i++) {
P[i] = this->myPoint[i] - v.myPoint[i];
}
return P;
}
Point Point::operator*( const Point& v) // +ve translation
{
Point P(v.dim());
assert(this->dim() == v.dim());
for (int i = 0; i < dim() ; i++)
{
P[i] = this->myPoint[i] * v.myPoint[i];
}
return P;
}
Point Point::operator/( const Point& v) // -ve translation
{
Point P(v.dim());
assert(this->dim() == v.dim());
for (int i = 0; i < dim() ; i++)
{
assert(v.myPoint[i] != 0);
P[i] = this->myPoint[i] / v.myPoint[i];
}
return P;
}
Point& Point::operator+=( const Point& v) // +ve translation
{
assert(this->dim() == v.dim());
for (int i = 0; i < dim() ; i++) {
this->myPoint[i] += v.myPoint[i];
}
return *this;
}
Point& Point::operator-=( const Point& v) // -ve translation
{
assert(this->dim() == v.dim());
for (int i = 0; i < dim() ; i++)
{
this->myPoint[i] -= v.myPoint[i];
}
return *this;
}
//------------------------------------------------------------------
// Point Scalar Operations (convenient but often illegal)
// are not valid for points in general,
// unless they are 'affine' as coeffs of
// a sum in which all the coeffs add to 1,
// such as: the sum (a*P + b*Q) with (a+b == 1).
// The programmer must enforce this (if they want to).
//------------------------------------------------------------------
std::ostream& operator<<( std::ostream& out,const Point& p) {
for (int i = 0; i < p.dim(); i++) {
out << p[i] << ", ";
}
return out;
}
Point operator*( int c, const Point& Q) {
Point P(Q.dim());
for (int i = 0; i < Q.dim() ; i++)
{
P[i] = c * Q[i];
}
return P;
}
Point operator*( double c, const Point& Q) {
Point P(Q.dim());
for (int i = 0; i < Q.dim() ; i++)
{
P[i] = c * Q[i];
}
return P;
}
Point operator*( const Point& Q, double c) {
Point P(Q.dim());
for (int i = 0; i < Q.dim() ; i++)
{
P[i] = c * Q[i];
}
return P;
}
Point operator/( const Point& Q, double c) {
Point P(Q.dim());
assert(c != 0);
for (int i = 0; i < Q.dim() ; i++)
{
P[i] = Q[i]/c;
}
return P;
}
//------------------------------------------------------------------
// Point Addition (also convenient but often illegal)
// is not valid unless part of an affine sum.
// The programmer must enforce this (if they want to).
//------------------------------------------------------------------
Point operator+( const Point& Q, double c) {
Point P(Q.dim());
for (int i = 0; i < Q.dim() ; i++)
{
P[i] = Q[i] + c;
}
return P;
}
Point operator-( const Point& Q, double c) {
Point P(Q.dim());
for (int i = 0; i < Q.dim() ; i++)
{
P[i] = Q[i] - c;
}
return P;
}
//------------------------------------------------------------------
// Sidedness of a Point wrt a directed line P1->P2
// - makes sense in 2D only
//------------------------------------------------------------------
//------------------------------------------------------------------
// Error Routines
//------------------------------------------------------------------
char* Point::errstr() { // return error string
switch (err) {
case Enot:
return "no error";
case Edim:
return "error: invalid dimension for operation";
case Esum:
return "error: Point sum is not affine";
default:
return "error: unknown err value";
}
}
double Point::distance( const Point&p0, const Point&p1) // Distance
{
double sum = 0.0f;
//sum += (p0.x - p1.x)*(p0.x - p1.x);
//sum += (p0.y - p1.y)*(p0.y - p1.y);
//sum += (p0.z - p1.z)*(p0.z - p1.z);
assert(p0.dim() == p1.dim());
for (int i = 0; i < p0.dim(); i++) {
sum += (p0[i] - p1[i])*(p0[i] - p1[i]);
}
return sqrt(sum);
}